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Associate Professor of Computer Science

Alexander Nabutovsky
Professor of Mathematics

Nigel Higson
Professor of Mathematics
Chair of the Mathematics Department

*Signatures are on file in the Graduate School.



Abstract

This thesis presents a formalization of general topology in second-order
arithmetic. Topological spaces are represented as spaces of filters on par-
tially ordered sets. If P is a poset, let MF(P ) be the set of maximal fil-
ters on P . Let UF(P ) be the set of unbounded filters on P . If X is
MF(P ) or UF(P ), the topology on X has a basis {Np | p ∈ P}, where
Np = {F ∈ X | p ∈ F}. Spaces of the form MF(P ) are called MF spaces;
spaces of the form UF(P ) are called UF spaces. A poset space is either an
MF space or a UF space; a poset space formed from a countable poset is
said to be countably based. The class of countably based poset spaces in-
cludes all complete separable metric spaces and many nonmetrizable spaces
including the Gandy–Harrington space. All poset spaces have the strong
Choquet property.

This formalization is used to explore the Reverse Mathematics of general
topology. The following results are obtained.

RCA0 proves that countable products of countably based MF spaces are
countably based MF spaces. The statement that every Gδ subspace of a
countably based MF space is a countably based MF space is equivalent to
Π1

1-CA0 over RCA0.
The statement that every regular countably based MF space is metriz-

able is provable in Π1
2-CA0 and implies ACA0 over RCA0. The statement that

every regular MF space is completely metrizable is equivalent to Π1
2-CA0

over Π1
1-CA0. The corresponding statements for UF spaces are provable in

Π1
1-CA0, and each implies ACA0 over RCA0.

The statement that every countably based Hausdorff UF space is either
countable or has a perfect subset is equivalent to ATR0 over ACA0. Π1

2-CA0

proves that every countably based Hausdorff MF space has either countably
many or continuum-many points; this statement implies ATR0 over ACA0.
The statement that every closed subset of a countably based Hausdorff MF
space is either countable or has a perfect subset is equivalent over Π1

1-CA0

to the statement that ℵL(A)
1 is countable for all A ⊆ N.
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Chapter 1

Introduction

1.1 Overview

This thesis is a contribution to the program of Reverse Mathematics, an on-
going research program in mathematics established in the 1970s by Harvey
Friedman and Stephen Simpson. One goal of the program is to formalize
large parts of core mathematics in second-order arithmetic. A second goal
is to determine which set existence axioms are required to prove these theo-
rems. In this setting, core mathematics means the mathematics learned by
undergraduate mathematics majors, including calculus, real analysis, geom-
etry, abstract algebra, combinatorics, basic mathematical logic, basic mea-
sure theory, and general topology.

Second-order arithmetic is a formal system in which, informally, there
are natural numbers and sets of natural numbers but nothing else. Thus in
second-order arithmetic there are no sets of sets or functions from sets to
sets. Despite the seemingly limited supply of objects, second-order arith-
metic is a rich and powerful system in which almost all the results of core
mathematics can be established. A variety of (more or less natural) coding
techniques are used to represent objects such as complete separable metric
spaces as sets of natural numbers. Once these representations have been
established, it is possible to state and prove theorems of core mathematics
as theorems of second-order arithmetic.

A mathematical structure may be represented in second-order arithmetic
if it is countable or has a countable substructure which determines the whole
structure. Thus complete separable metric spaces, which are typically un-
countable, may be represented because they are completely determined by
a countable dense subset and a metric on the dense subset. This metric can
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be viewed as a sequence of real numbers, which in turn can be viewed as a
single set of natural numbers. A detailed development of the number sys-
tems and complete separable metric spaces in a relatively weak subsystem
of second-order arithmetic is given by Simpson [Sim99, Chapter II].

A central goal of Reverse Mathematics is to determine which set exis-
tence axioms are required to prove theorems of core mathematics. A set
existence axiom is said to be required to prove a theorem if the theorem
implies the axiom in a basic logical system strictly weaker than the axiom.
A theorem is equivalent to a set existence axiom if the theorem requires the
axiom and the axiom (with the possible addition of some weak basic axioms)
is sufficient to prove the theorem. We may thus partition the theorems of
core mathematics into equivalence classes of theorems that require the same
set existence axioms for proof. A surprising fact is that a great many the-
orems of core mathematics fall into a few natural equivalence classes, as
documented in [Sim99].

Core mathematics includes the basic definitions and results of general
topology. These topics are part of the undergraduate curriculum at many
universities and form part of the basic working knowledge of contempo-
rary mathematicians. Despite this fact, there has been little previous re-
search on formalizing general topology in second-order arithmetic. This
thesis presents a specific formalization of general topology in second-order
arithmetic. Topological spaces are coded as countable partially ordered
sets (posets); the points in a space are represented by filters on the poset.
Many familiar spaces can be represented in this way, including all complete
separable metric spaces and many nonmetrizable spaces. This formaliza-
tion of general topology is used to determine which set existence axioms
are required to prove some basic theorems of general topology, including
metrization theorems.

1.2 Previous and related research

The relationship between topological spaces and partially ordered sets has
been known since Stone proved a famous duality theorem [Sto37]. Stone’s
theorem shows that the set of maximal filters on a Boolean algebra, with
a natural topology determined by the algebra, forms a totally disconnected
compact Hausdorff space. Furthermore, every such space is obtained from
some Boolean algebra. Stone’s work has inspired several contemporary re-
search programs which use filters on partially ordered sets to represent topo-
logical spaces.
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The program of Locale Theory (also known as pointfree topology or
pointless topology) studies generalized objects known as locales using the
tools of category theory; Johnstone [Joh82] provides a good introduction.
Some authors, such as Fourman and Grayson [FG82], use an intuitionistic
logic to study locales while other authors, such as Johnstone, use classical
logic. A central goal of locale theory, according to Johnstone [Joh83], is
to replace classical topological proofs with more constructive proofs in the
category of locales.

The program of Formal Topology seeks to develop a theory of topology
in intuitionistic type theory. A comprehensive introduction to this program
is given by Sambin [Sam03]. Curi [Cur03] has shown that a version of
Urysohn’s Metrization Theorem for formal topologies has a constructive
proof in type theory. We will show in Chapter 4 (see Corollary 4.3.3) that
any proof of Urysohn’s Metrization Theorem for MF spaces in second-order
arithmetic requires nonconstructive set existence axioms.

An important distinction between the research in this thesis and the re-
search in Locale Theory and Formal Topology is that we use classical logic
and nonconstructive methods when they are necessary. We view our work
as being formalized in set theory (or second-order arithmetic, which can be
viewed naturally as a weak set theory). An even more crucial difference is
that the research here is not meant to supplant the classical theory of topol-
ogy or to correct deficiencies in the classical theory of topology. Instead, the
research given here is intended to measure the set existence axioms required
to prove well-known theorems of topology as they stand. Although we must
formalize topology in second-order arithmetic to do this, our definitions of
concepts such as continuous functions and metrizability are equivalent to
the classical ones over ZFC.

The program known as Domain Theory uses classical logic to study var-
ious topologies on a class of partially ordered sets, known as domains, which
have certain completeness properties. A thorough exposition of Domain
Theory is given by Giertz et al. [GHK+03]. The motivation behind Domain
Theory is to consider maximal elements of a domain as “complete” or “to-
tal” objects, and view nonmaximal elements as approximations to complete
objects. It has been shown that certain topological spaces may be repre-
sented as sets of maximal objects of domains. Lawson [Law97] has shown
that every complete separable metric space may be represented as the set of
maximal objects in a domain; Martin [Mar03] has shown that every metric
space representable as the set of maximal objects of a domain is completely
metrizable. There has been little work in the Domain Theory program to
determine which set existence axioms are required to prove the theorems of
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Domain Theory; a possible project in Reverse Mathematics is to formalize
Domain Theory in second-order arithmetic and determine the strengths of
theorems in Domain Theory. No such analysis is given in this thesis.

Contemporary research in the Computable Analysis program aims to
develop a theory of computability for topological spaces. This research is
inspired by the work of Bishop, Bridges, Weihrauch, and others. An impor-
tant aspect of computable mathematics is that extra hypotheses are often
required to prove effective versions of classical theorems. For example, it
is common to assume that all continuous functions have a modulus of uni-
formly continuity. In this thesis, we formalize the theorems of mathematics
without adding additional hypotheses. It is interesting to note that a result
of Schröder [Sch98] inspired the proof of Urysohn’s Metrization Theorem in
second-order arithmetic presented in Chapter 4.

Many facts about complete separable metric spaces have been formalized
in second-order arithmetic and analyzed for their their Reverse Mathemat-
ics strength. There has not been much work, however, on nonmetrizable
spaces, or even on metrizable spaces without a fixed metric. Hirst [Hir93]
has proved that the one-point compactification of a countable closed locally
totally bounded subset of a complete separable metric space is metrizable.
We obtain results in Section 4.4 which are closely related to Hirst’s result.

1.3 Summary of results

In Chapter 2, we investigate a class of topological spaces known as poset
spaces. This chapter is written in the style of contemporary core mathemat-
ics; it does not address issues of formalization. This chapter should thus be
accessible to a broad audience of mathematicians.

There are two kinds of poset spaces: UF spaces and MF spaces. We show
that the class of poset spaces includes all complete separable metric spaces
and all regular locally compact Hausdorff spaces. Other spaces, including
the Gandy–Harrington space, are also poset spaces. The class of MF spaces
is closed under arbitrary topological products, and every Gδ subspace of
an MF space is an MF space. Every metrizable poset space is completely
metrizable. We show that every countably based Hausdorff MF space has
either countably many points or else has cardinality 2ℵ0 . Countably based
Hausdorff UF spaces either have countably many points or have a perfect
subset.

In Chapter 3, we formalize poset spaces in second-order arithmetic. For-
mal definitions of coded poset spaces and coded continuous functions are
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presented and justified. In some cases, we must choose between defini-
tions which are equivalent in ZFC but not equivalent in weak subsystems of
second-order arithmetic. One example of such a choice is the definition of a
metrizable poset space (Definition 3.2.25).

In Chapter 4, we explore the Reverse Mathematics of countably based
poset spaces (that is, poset spaces obtained from countable posets). We
first consider, in Section 4.1, the Reverse Mathematics of filter extension
theorems. It is shown that ACA0 is equivalent over RCA0 to the statement
that every subset of a countable poset has an upward closure. Π1

1-CA0 is
equivalent over ACA0 to the statement that every filter on a countable poset
is contained in a maximal filter.

Section 4.2 gives a discussion of subspaces and product spaces of count-
ably based MF spaces. It is shown that RCA0 can construct products of
countably based MF spaces. The statement that every Gδ subspace of a
countably based MF space is a countably based MF space is equivalent to
Π1

1-CA0 over RCA0.
In Section 4.3, we examine the Reverse Mathematics of metrization theo-

rems. We first examine Urysohn’s Metrization Theorem. Urysohn’s Metriza-
tion Theorem for MF spaces states that every countably based regular MF
space is metrizable. This theorem is provable in Π1

2-CA0. Urysohn’s Metriza-
tion Theorem for UF spaces is defined similarly. We show that Urysohn’s
Metrization Theorem for UF spaces is provable in Π1

1-CA0.
Choquet’s Metrization Theorem states that a second-countable topolog-

ical space is completely metrizable if and only if it is regular and has the
strong Choquet property (see Definition 2.2.3). We prove in Section 2.3.3
that every poset space has the strong Choquet property. The strong Cho-
quet property is not definable in second-order arithmetic. Our formalization
of Choquet’s Metrization Theorem for MF spaces is the statement “A count-
ably based MF space is completely metrizable if and only if it is regular.”
Choquet’s Metrization Theorem for UF spaces is defined similarly. We show
in Section 4.3.2 that Π1

2-CA0 proves Choquet’s Metrization Theorem for MF
spaces, and Π1

1-CA0 proves Choquet’s Metrization Theorem for UF spaces.
In Section 4.3.3, we show that Choquet’s Metrization Theorem for MF

spaces is equivalent to Π1
2-CA0 over Π1

1-CA0. This is the first example of a
theorem of core mathematics which is provable in second-order arithmetic
and implies Π1

2-CA0. We also show that two other, closely related, theorems
are equivalent to Π1

2-CA0 over Π1
1-CA0.

In Section 4.4, we explore compact poset spaces. We prove that ACA0

is equivalent over WKL0 to the statement that every sequence in a compact
poset space has a convergent subsequence. We show in Π1

1-CA0 that every
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locally compact complete separable metric space has a one-point compacti-
fication.

In Section 4.5, we consider cardinality dichotomy theorems and perfect
set theorems for poset spaces. We show that the perfect set theorem for
countably based Hausdorff UF spaces is equivalent to ATR0 over ACA0. The
perfect set theorem for analytic subsets of Hausdorff UF spaces is also equiv-
alent to ATR0 over ACA0. A cardinality dichotomy theorem for countably
based Hausdorff MF spaces is provable in Π1

2-CA0 and implies ATR0 over
ACA0. We also show, in Π1

1-CA0, that the perfect set theorem for closed
subsets of Hausdorff countably based MF spaces is equivalent to the propo-
sition that ℵL(A)

1 is countable for all A ⊆ N. This is an example of a natural
statement about MF spaces which is independent of ZFC.
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Chapter 2

Topology of Poset Spaces

In this chapter, we define and study two classes of topological spaces: MF
spaces and UF spaces. The MF and UF spaces are collectively referred
to as poset spaces. This chapter is written in the style of contemporary
mathematics. Although the results presented here could be formalized in
any sufficiently strong set theory, such as ZFC, we do not dwell on the
formalization. In Chapters 3 and 4, we will formalize many of these results
in the formal system of second-order arithmetic.

2.1 Background in general topology

The material in this section is standard and can be found in any introductory
general topology book, such as those by Kelly [Kel55] or Hocking and Young
[HY88]. These books give much more thorough expositions of topology than
is given here; the purpose of this section is only to set the stage for the results
to follow.

Definition 2.1.1. Let X be a nonempty set. A topology T on X is a
collection of subsets of X, known as the open sets, such that:

1. The empty set and the entire space are open sets.

2. If A is a collection of open sets then
⋃

A is an open set.

3. If B is finite collection of open sets then
⋂

B is an open set.

If a point x is in an open set U then we say U is a neighborhood of x. A
set is called closed if its complement is open. The closure of a set S is the
smallest closed set containing S; we denote it by cl(S). A set is clopen if it
is closed and open.
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If B ⊆ T and every element of T is a union of elements of B then B is
called a basis for T . A topological space is called second countable if it has
a countable basis.

A sequence is a function from ω to X. Here ω = {0, 1, 2, . . .} is the set of
nonnegative integers. A sequence 〈xi〉 is said to converge to a point x ∈ X
if xi is eventually inside every open set containing x, i.e., if

∀U ∈ T [x ∈ U ⇒ ∃n∀m > n(xm ∈ U)].

In this case, we say that x is the limit of the sequence 〈xi〉. The topological
space X is called separable if there is a countable subset A ⊆ X so that
every point in X is the limit of a sequence of points in A.

Let X and Y be topological spaces. A function f : X → Y is called
continuous if for every open set V ∈ Y the preimage f−1(V ) is open in
X. It can be shown that a function f : X → Y is continuous if and only if
whenever a point x ∈ X satisfies f(x) ∈ V for some open V ⊆ Y there is an
open neighborhood U of x such that f(U) ⊆ V . A continuous bijection with
a continuous inverse is called a homeomorphism. If there is a homeomor-
phism from X to Y , we write X ∼= Y . The homeomorphism relation is an
equivalence relation on the class of topological spaces; the equivalence class
of a space X under homeomorphism is called the homeomorphism type of X.
Properties of a topological space which depend only on the homeomorphism
type of the space are called topological invariants.

We now define what are known as the separation axioms. Let X be a
topological space. We say X is a T0 space if for every pair of distinct points
at least one point has a neighborhood not containing the other. X is a T1

space if for any two distinct points, each has a neighborhood not containing
the other. X is a Hausdorff space if for any pair of distinct points x, y there
is a pair of disjoint neighborhoods U, V with x ∈ U and y ∈ V . X is a
regular space if X is a T0 space and whenever a point x is not in a closed set
C there are disjoint open sets U, V with x ∈ U and C ⊆ V . X is a normal
space if X is a T0 space and for every pair of disjoint closed sets C0, C1 there
is a pair of disjoint open sets U0, U1 with C0 ⊆ U0 and C1 ⊆ U1. Note that
the following implications hold for an arbitrary topological space:

normal ⇒ regular ⇒ Hausdorff ⇒ T1 ⇒ T0 .

None of the implications in the other direction holds in general. Each of the
separation axioms is a topological invariant.

A metric on a set X is a function d : X ×X → [0,∞) such that for all
x, y, z ∈ X:

8



1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z).

For any ε > 0 and x ∈ X, the open ball centered at x of radius ε (relative
to d) is the set B(x, ε) = {y | d(x, y) < ε}.

Every metric on X induces a topology on X with the basis {B(x, ε) |
x ∈ X, ε ∈ Q+}. A metric space 〈X, d〉 consists of a set X and a metric d
on X. A topological space 〈X, T 〉 is metrizable if there is a metric d on X
which induces T . The following theorem, known as Urysohn’s Metrization
Theorem, gives a well known characterization of metrizability for second-
countable spaces.

Theorem 2.1.2 (Urysohn). A second-countable space is metrizable if
and only if it is regular.

Let 〈X, d〉 be a metric space. A sequence 〈xi〉 ⊆ X is called a Cauchy
sequence if

∀ε ∃N ∀n, m > N [d(xn, xm) < ε].

A metric space is said to be complete if every Cauchy sequence converges to
some point. Note that the completeness of a metric space depends on the
specific metric given, not just on the homeomorphism type of the space.
Thus completeness is not a topological invariant of metric spaces. The
existence of a complete metric, however, is a topological invariant, which is
known as complete metrizability. In Section 2.2.3, we will give a topological
characterization (Theorem 2.2.5) of complete metric spaces, due to Choquet,
which is analogous to Urysohn’s Metrization Theorem for separable metric
spaces.

A perfect subset of a topological space is a nonempty closed set which
has no isolated points in the subspace topology. Every homeomorphic image
of the Cantor space 2ω is a perfect set, and every perfect set in a Hausdorff
space contains a homeomorphic image of 2ω. The cardinality of the Can-
tor space is 2ℵ0 (the cardinality of the powerset of ω). Because a second-
countable Hausdorff space has cardinality at most 2ℵ0 , the existence of a
perfect set is enough to show that the cardinality of such a space is exactly
2ℵ0 .

A collection 〈Ui | i ∈ I〉 of open subsets of a topological space X is point
finite if for each x ∈ X the set {i | x ∈ Ui} is finite. It is known that for
each collection 〈Ui〉 of open subsets of a metric space there is a point-finite
collection 〈Vi〉 such that

⋃
i∈I Ui =

⋃
i∈I Vi and Vi ⊆ Ui for each i ∈ I.

9



2.2 Games

In this section, we consider several games on topological spaces. These
games are described in more detail in the monograph of Kechris [Kec95].
We will use these games to establish more complex topological properties of
poset spaces in Section 2.3.3. A unique aspect of our analysis is that we will
formalize the star game in second-order arithmetic in Chapter 4. The strong
Choquet game cannot be directly formalized in second-order arithmetic, but
this game is the inspiration for our proof of Lemma 4.3.23 in a subsystem
of second-order arithmetic.

2.2.1 Gale–Stewart games

We begin with an informal description of Gale–Stewart games: these are
games of length ω with perfect information. Each game is played in ω
stages, numbered 0, 1, 2, . . .. There are two players: i and ii. There is a set
S of objects and a fixed G ⊆ Sω; each of these sets is known by both players
before the game begins.

At stage n of the game, i chooses an ∈ S and then ii chooses bn ∈ S. The
elements of S are known as moves. Each players is aware of both moves that
were made at each past stage, and each player may use a particular move
an arbitrary number of times. The action of this game is often described in
a diagram:

i: a1 a2 · · ·
ii: b1 b2 · · · .

At the end of the game, the players have chosen an infinite sequence

f = 〈a1, b1, a2, b2, . . .〉 ∈ Sω .

Each such sequence, known as a play, represents a single completed instance
of the game. The set G, known as the payoff set, will tell which player won.
If f ∈ G then i wins. Otherwise, ii wins. There are no ties.

For some games, one player will have a winning strategy. A winning
strategy for i is a function si :

⋃
n∈ω S2n → S such that for every f ∈ Sω if

f(2n + 1) = si(f [2n]) for all n then f ∈ G. This means that i wins every
play of the form

i: a1 = si(〈 〉) a2 = si(〈a1, b1〉) a3 = si(〈a1, b1, a2, b2〉) · · ·
ii: b1 b2 · · · .
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A winning strategy for ii is a function sii :
⋃

n∈ω S2n+1 → S such that for
every f ∈ Sω if f(2n + 2) = sii(f [2n + 1]) for all n then f 6∈ G. This means
that ii wins every play of the form

i: a1 a2 a3 · · ·
ii: b1 = sii(〈a1〉) b2 = sii(〈a1, b1, a2〉) · · · .

At most one player can have a winning strategy; for some games neither
player has a winning strategy. A game is determined if one player has a
winning strategy. We say that the payoff set G is determined if its corre-
sponding game is determined.

Theorem 2.2.1 (Gale–Stewart [GS53]). Let S be any set with the
discrete topology and let G be a subset of Sω. If G is either open or closed
in the product topology on Sω then G is determined.

2.2.2 Star games

Definition 2.2.2. We define the star game for an arbitrary topological
space. Player i plays pairs of nonempty open sets 〈Vi(0), Vi(1)〉. Player ii
chooses an element of {0, 1} on each turn. So the game looks like:

i: 〈V0(0), V0(1)〉 〈V1(0), V1(1)〉 〈V2(0), V2(1)〉 · · ·
ii: k0 k1 k2 · · ·

We require that

Vi+1(j) ⊆ Vi(ki) for all i ∈ ω and j = 0, 1. (2.2.1)

The moves satisfying this requirement at any stage are called legal moves.
Player i wins the game if requirement (2.2.1) is always met and Vk(0) ∩
Vk(1) = ∅ for all k. The set of moves and the set of winning plays for i are
thus well defined.

The star game on an arbitrary topological space is determined, because
the set of winning plays for i is a closed subset of the set of all plays.

We informally describe the idea behind the star game. Player i is trying
to construct an injective map from 2ω to X; a winning strategy for i would
give such an injection. The moves of player ii localize the construction.
Thus if ii has a winning strategy then there is no open set in X where an
injection can be constructed. It is a nonobvious fact (see Lemma 2.3.26)
that for many spaces the existence of a winning strategy for ii implies that
the space is countable.
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2.2.3 Strong Choquet games

A topological space has the property of Baire if every intersection of count-
ably many dense open sets is dense. Every complete metric space has the
property of Baire, and there are nonmetrizable spaces that have the prop-
erty of Baire. There are metrizable spaces with the property of Baire that
are not completely metrizable (see [Coh76] and [FK78]).

Definition 2.2.3. We define the strong Choquet game on a topological
space X. Player i makes moves of the form 〈U, x〉 where U is an open set
and x ∈ U . Player ii plays open sets. So the game looks like this:

i: 〈U0, x0〉 〈U1, x1〉 〈U2, x2〉 · · ·
ii: V0 Vi V2 · · ·

We require that

Vi ⊆ Ui, Ui+1 ⊆ Vi, and xi ∈ Vi for all i ∈ ω . (2.2.2)

Thus
⋂

Ui =
⋂

Vi. Player i wins the game if
⋂

Ui = ∅; ii wins otherwise.
The set of moves and the set of winning plays for i are thus well defined.

A strong Choquet space is a space for which ii has a winning strategy in
the strong Choquet game.

The next theorem is well known.

Theorem 2.2.4. Every strong Choquet space has the property of Baire.

Proof. Assume that ii has a winning strategy s for the strong Choquet game
on X, and let 〈Ui〉 be a sequence of dense open sets. Let V be any open
subset of X. At stage 0, choose choose a point x0 ∈ V ∩ U0, and let W0 be
s(〈〈xo, V ∩U0〉〉. By induction, assume that Wi has been defined. Choose a
point xi+1 ∈ WI ∩ Ui+1 and let

Wi+1 = s (〈〈x0, V ∩ U0〉,W0, 〈x1,W0 ∩ U1〉,W1, . . . , 〈xi,Wi ∩ Ui+1〉〉) .

Because s is a winning strategy, there is a point in x ∈ ⋂
Wi. Clearly,

x ∈ V ∩⋂
Ui as well. Thus

⋂
Ui is dense.

The motivation behind the strong Choquet game is clearest in the case
where X is a metric space. Player i is trying to show that the metric space
is not complete; so i will try to choose a Cauchy sequence 〈xi〉 which does
not converge. Player ii tries to steer the developing sequence away from any
“holes” in the space. If i has a winning strategy then ii must be unable to
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prevent i from finding a hole, so the space must be “very” incomplete. If ii
has a winning strategy, then the holes are not “too dense.” This informal
explanation is justified by the following theorem of Choquet, which is proved
in [Kec95, Theorem 8.17(ii)]. We will present a proof of a closely related
statement in Lemma 4.3.23.

Theorem 2.2.5 (Choquet). A metric space is completely metrizable if
and only if it is a strong Choquet space.

Unlike the star game, the strong Choquet game is not always determined.
The complete metric spaces are a natural class of spaces for which ii has
a winning strategy. The Gandy–Harrington space is also a strong Choquet
space. Player i has a winning strategy for the strong Choquet game on Q.

We end the section by showing that, with regard to the existence of
winning strategies, there is no loss in requiring players in the strong Choquet
game to play open sets from a fixed basis.

Proposition 2.2.6. Consider the variant of the strong Choquet game in
which both players are constrained to play open sets from a fixed basis B
rather than playing arbitrary open sets. The variant game is determined if
and only if the original game is determined, and in this case the same player
has a winning strategy in both games.

Proof. First suppose i has a winning strategy for the original game. To play
the variant game, i merely replaces the open set the strategy specifies with a
basic open subset containing the specified point. Then ii will respond with
a basic open set containing the point and contained in the open set that the
strategy wanted i to play. So i can use the strategy to get the next move,
and so on.

Now suppose ii has a winning strategy for the original game. Given an
open set and a point by i, ii chooses a basic open set containing the point
and inside the open set prescribed by the strategy. Player i will respond
with another open set and point inside the open set that ii played. This
move will be inside the open set the strategy prescribed. So ii can continue
using the original strategy to win.

We have thus shown that a winning strategy for the original game can
be used by the same player to win the variant game. We prove the other
direction of the implication to finish the proof.

Suppose that i has a winning strategy for the variant game. Then given
an open set by player ii, i merely replaces it with a basic open subset which
would be a legal move for ii, and applies the original strategy. It is straight-
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forward to show that i will win the game.
Finally, suppose that ii has a winning strategy in the variant game.

Given an open set and a point by i, ii replaces the open set with a basic
open subset containing the point. This replacement yields a legal move for
i; so ii can use the strategy to choose the next move. This method will allow
ii to win the original game.

2.3 Poset spaces

In this section we define the class of poset spaces. We show that all complete
metric spaces are poset spaces, but not all second-countable Hausdorff poset
spaces are metrizable. We also show that all locally compact Hausdorff
spaces are poset spaces. In the remainder of the section, we establish some
basic topological properties of poset spaces.

2.3.1 Definition and examples

Definition 2.3.1. A poset is a nonempty set P with a binary relation ¹
such that for all p, q, r ∈ P :

1. p ¹ p.

2. If p ¹ q and q ¹ p then q = p.

3. If p ¹ q and q ¹ r then p ¹ r.

A poset P has an auxiliary relation ≺ defined by letting p ≺ q if p ¹ q and
p 6= q. The relations ¹ and ≺ are so closely related that we will often use
the most convenient relation for the task at hand without comment.

Each subset A of a poset P has an upward closure, denoted ucl(A),
satisfying ucl(A) = {p ∈ P | ∃q ∈ A[q ¹ p]}. If A = ucl(A) then A is said to
be upward closed.

Let P be a poset and let p, q ∈ P . If there is an r ∈ P such that r ¹ p
and r ¹ q then we say that p and q are compatible. If p and q are not
compatible, they are said to be incompatible; in this case, we write p ⊥ q.
If p ¹ r then we say p extends r. Thus p ⊥ q if and only if p and q have no
common extension.

Definition 2.3.2. A filter is a subset F ⊆ P such that for all p, q ∈ P :

1. If p ∈ F and q ∈ F then there is an r ∈ F such that r ¹ p and r ¹ q.
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2. If p ∈ F and p ¹ q then q ∈ F .

In other words, a filter is an upward-closed subset of P in which every two
elements have a common extension. We say that a filter F ′ extends a filter
F if F ⊆ F ′.

A filter is maximal if it cannot be extended to a strictly larger filter. We
let MF(P ) denote the set of all maximal filters on P .

A filter F on a poset P is unbounded if there is no p ∈ P such that p ≺ q
for all q ∈ F . We let UF(P ) denote the set of all unbounded filters on P .

It is clear that every maximal filter is unbounded; thus MF(P ) ⊆ UF(P )
for every poset P . The existence of maximal filters is a consequence of Zorn’s
Lemma.

A sequence 〈pi | i ∈ ω〉 is said to be descending if pi+1 ¹ pi for all i ∈ ω.
The sequence is strictly descending if pi+1 ≺ pi for all i ∈ ω.

Proposition 2.3.3. Let P be a countable poset and let F be a filter on P .
There is a descending sequence 〈pi | i ∈ ω〉 ⊆ F such that for every q ∈ F
there is an i ∈ ω such that pi ¹ q. Hence F is the upward closure of 〈pi〉.
Definition 2.3.4 (Poset spaces). Let P be a poset. We define a topology
on UF(P ) by fixing as a basis the collection {Np | p ∈ P}, where

Np = {F ∈ UF(P ) | p ∈ F}.
We give MF(P ) the topology inherited as as subspace of UF(P ). Thus each
p ∈ P gives a neighborhood Np = {F ∈ MF(P ) | p ∈ F}. Although the
notation Np is used both for UF(P ) and for MF(P ), context will always de-
termine which kind of space is intended. For U ⊆ P , we let NU =

⋃
p∈U Np.

A space of the form MF(P ) or UF(P ), with the topology just described,
is called a poset space. Spaces of the form MF(P ) are called MF spaces,
while spaces of the form UF(P ) are called UF spaces. A poset space which
is formed from a countable poset is said to be countably based.

The intuition motivating the definition of MF spaces is that each open
set in a topological space determines a property that an arbitrary point in
the space may or may not have (the property is that of membership in the
open set). A collection of properties determined by a collection of open
sets is consistent if and only if the open sets have a nonempty intersection.
The T1 axiom implies that the family of neighborhoods of a fixed point
corresponds to a maximal consistent collection of properties. The definition
of MF spaces reverses this reasoning. We begin with a poset P and declare
that a collection S ⊆ P is a consistent set of conditions if S extends to a
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filter on P . We construct a topological space from P by declaring that every
maximal filter on the poset corresponds to exactly one point; we topologize
the space of maximal filters by choosing the smallest (weakest) topology in
which every element of the poset determines an open set. The T1 axiom will
always hold in the resulting space.

The intuition behind UF spaces is more subtle; there is no reason to
believe that every unbounded filter of open sets in a topological space should
determine a unique point. It is easy to construct a filter of open subsets of
R (ordered by set inclusion) such that no open set is contained in every
element of the filter, but nevertheless there are uncountably many points
which lie in every open set of the filter. It is possible, however, to order the
open sets of R in a different way so that the unbounded filters in the new
ordering form a space homeomorphic to R. More generally, every completely
metrizable space can be represented as a UF space and as an MF space (see
Theorem 2.3.9). Our motivation for studying UF spaces is that they have
certain definability properties in second-order arithmetic that MF spaces do
not have.

Lemma 2.3.5. Every UF space satisfies the T0 axiom. Every MF space
satisfies the T1 axiom. Moreover, for any poset P , UF(P ) satisfies the T1

axiom if and only if UF(P ) = MF(P ).

Proof. Because any two distinct filters on P are distinct as subsets of P ,
their symmetric difference is nonempty. Thus there is an element of P
which belongs to one filter but not the other. This shows that MF(P ) and
UF(P ) are T0 spaces for every poset P .

For any distinct maximal filters F and G on P there must be p, q ∈ P
such that p ∈ F \G and q ∈ G \ F . This shows that each MF space is a T1

space.
If UF(P ) = MF(P ) then UF(P ) is a T1 space. To prove the converse,

suppose that UF(P ) satisfies the T1 axiom. Let F be an unbounded filter.
Towards a contradiction, assume there is a filter G strictly extending F ;
then G is also unbounded. By the T1 axiom, there is a p ∈ F \ G, which
is a contradiction. Thus UF(P ) = MF(P ) if and only if UF(P ) is a T1

topological space.

The previous lemma is optimal in the sense that an arbitrary UF space
need not be T1, and an arbitrary MF space need not be Hausdorff. We now
give examples to prove this claim.
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Examples 2.3.6. We construct a countable poset P such that UF(P ) is
not a T1 space. Let {pi} and {qi} be disjoint sets. We let ≺ be the smallest
partial order on P such that:

1. pi ≺ pj whenever i > j.

2. qi ≺ qj whenever i > j.

3. qi ≺ pi for all i.

The unbounded filter {pi} has no open neighborhood not containing the
unbounded filter {qi}. Thus UF(P ) is not T1, and UF(P ) 6= MF(P ).

We next construct a countable poset Q such that MF(Q) is not a Haus-
dorff space. Let {pi}, {qi}, and {ri} be pairwise-disjoint countable sets and
let P = {pi} ∪ {qi} ∪ {ri}. The order ≺ on Q is the smallest partial order
on Q such that:

1. pi ≺ pj whenever i > j.

2. qi ≺ qj whenever i > j.

3. ri ⊥ rj whenever i 6= j.

4. ri ≺ pj whenever i > j.

5. ri ≺ qj whenever i > j.

It is straightforward to verify that F1 = {pi} and F2 = {qj} are distinct
maximal filters on P . But there are no incompatible p, q such that F1 ∈ Np

and F2 ∈ Nq. Thus MF(Q) is not a Hausdorff space.

Example 2.3.7. We construct a countable poset P such that MF(P ) is
Hausdorff but not regular. Let A = {aσ | σ ∈ 2<ω} and B = {bτ | τ ∈ 2<ω}
be disjoint sets. We write |σ| for the length of σ ∈ 2<ω.

The elements of the poset P are exactly the disjoint union of A and B.
The order on P is the smallest order containing the following relations:

1. aσ ¹ aσ′ whenever σ ⊇ σ′.

2. bτ ¹ bτ ′ whenever τ ⊇ τ ′.

3. bτ ¹ aσ if τ = σ and the last element in the sequence σ is a 1.
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We begin by characterizing the maximal filters on P . Let f be an element
of 2ω. For each n ∈ ω let f [n] = 〈f(0), . . . , f(n−1)〉 ∈ 2<ω. If f is eventually
zero, then the set {af [n] | n ∈ N} is a maximal filter on P . Otherwise,
{af [n], bf [n] | n ∈ ω} is a maximal filter on P . These are all of the maximal
filters on P .

We next show that MF(P ) is Hausdorff. Suppose that F and G are
distinct maximal filters. If both F and G contain an element of B, then F
and G contain incompatible elements of B, and these yield a pair of disjoint
neighborhoods of F and G. If neither F nor G contains an element of B,
a similar argument shows that F and G have disjoint neighborhoods. Now
suppose G contains an element of B and F does not. Choose n such that
f(m) = 0 for all m > n. Choose k > n such that g(k) = 1. Then af [k+1]

and bg[k+1] yield disjoint neighborhoods of F and G, respectively.
Finally, we show that MF(P ) is not regular. Let g be the unique element

of 2ω such that g(n) = 1 for all n ∈ ω. Let G be the associated filter. Note
that Nb〈〉 is a neighborhood of G. We claim that there is no p ∈ P such that
G ∈ Np and cl(Np) ⊆ Nb〈〉 . If there were such a neighborhood, there would
be a neighborhood of the form Nbτ for some τ ∈ 2<ω. Let τ ∈ 2<ω be fixed.
Let f be the unique element of 2ω such that f [|τ |] = τ and f(n) = 0 for all
n ≥ |τ |, and let F be the associated filter. Clearly F 6∈ Nbτ . We claim that
F ∈ cl(Nbτ ). Let aσ be an arbitrary neighborhood of F ; we may assume
|σ| > |τ | and thus τ ⊆ σ. Let gσ be the unique element of 2ω such that
gσ[|σ|] = σ and gσ(n) = 1 for n ≥ |σ|. Then gσ ∈ Naσ and, since τ ⊆ σ,
gσ ∈ Nbτ . Thus Naσ and Nbτ are not disjoint. Since no neighborhood of F
is disjoint from Nbτ , F ∈ cl(Nbτ ).

It is interesting to note that the subset of MF(P ) corresponding to Z =
{f ∈ 2ω | ∃n∀m ≥ n [f(m) = 0]} is closed in MF(P ), but Z is an Fσ set in
2ω. The construction of P is closely related to a more general construction
which will be presented as Lemma 4.3.35. We will show in Example 4.3.38
how to obtain the present example as a corollary of Lemma 4.3.35.

We do not know if the space constructed in Example 2.3.7 is homeomor-
phic to a UF space; see Problem 2.3.34.

Open Problem 2.3.8. Find an example of a countable poset P such that
UF(P ) is Hausdorff but not regular.

We will next show that the class of poset spaces is quite rich by proving
that several large classes of topological spaces may be represented as poset
spaces. The first such class consists of the completely metrizable spaces. We
let Q+ denote the set of positive rational numbers.
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Theorem 2.3.9. Suppose that X is a completely metrizable space. There
is a poset P such that X ∼= MF(P ) and UF(P ) = MF(P ). We may take the
cardinality of P to be that of any dense subset of X.

Proof. Let d be a complete metric on X compatible with the original topol-
ogy. We may assume that X is infinite, because the theorem is trivial if X
is finite. Let A be a dense subset of X. Let P = A × Q+, and order P
by setting 〈a, r〉 ≺ 〈b, s〉 if d(a, b) + r < s. Note that if 〈a, r〉 ≺ 〈b, s〉 then
cl(B(a, r)) ⊆ B(b, s), although the converse may fail (in a discrete space,
for example). It is clear that the cardinality of P is that of A, since A is
infinite.

We define a map φ : X 7→ MF(P ) which will turn out to be a homeo-
morphism. For each x ∈ X, choose a sequence 〈xi〉 of elements of A such
that xi → x and d(xi, x) ≤ 2−i for all i; this is possible even if X is not
separable, because X is a metric space. Let φ(x) be the filter generated by
{〈xi, 2−i〉 | i ∈ ω}; denote this filter F (〈xi〉).

We first prove that φ(x) is well defined. Suppose that 〈xi〉 and 〈yj〉 are
two sequences satisfying the conditions of the previous paragraph. Let Np

be in F (〈xi〉); so 〈xi, 2−i〉 ¹ p for some i. Choose k such that 2−i−d(xi, x) >
2−k. Then

d(yk+1, xi) ≤ d(yk+1, x) + d(xi, x)

≤ 2−(k+1) + d(xi, x),

which implies

d(yk+1, xi) + 2−(k+1) ≤ 2−k + d(xi, x)

< 2−i.

This implies that 〈yk+1, 2−k+1〉 ¹ 〈xi, 2−i〉; hence 〈xi, 2−i〉 ∈ F (〈yj〉). We
conclude F (〈xi〉) ⊆ F (〈yj〉). A parallel argument shows that F (〈yj〉) ⊆
F (〈xi〉). Hence φ is well defined.

Next, we show that φ(x) is a maximal filter. Suppose that {〈y, r〉}∪φ(x)
extends to a filter F . Let 〈〈yj , rj〉 | i ∈ N〉 be an infinite descending sequence
in F beginning with 〈y, r〉 which is eventually below every element of φ(x).
It is clear that the sequence 〈yj | i ∈ N〉 converges to x. It follows from
the argument in the previous paragraph that 〈y, r〉 ∈ φ(x). Thus φ(x) is a
maximal filter.

We claim that φ : X → MF(P ), which we have now shown to be well de-
fined, is a homeomorphism. It is straightforward to show that φ is injective.
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Given F ∈ MF(P ), we can use any infinite descending sequence of elements
of F to find a single point x ∈ X such that x ∈ ⋂

F . But then F = φ(x).
Thus φ is surjective. The preimage of a condition 〈x, 2−i〉 ∈ P consists of
those points y ∈ X for which d(x, y) < 2−i; hence φ−1(N〈x,2i 〉) = B(x, 2−i).
Thus φ is continuous. The proof that φ is an open map is similar.

To see that UF(P ) = MF(P ), note that in any unbounded descending
sequence F = {〈ai, ri〉} we have lim ri = 0. Thus there is a unique x ∈⋂

B(ai, ri); so ucl(F ) is the maximal filter F (x).

Corollary 2.3.10. For every complete separable metric space X there is
a countable poset P such that X ∼= MF(P ) and MF(P ) = UF(P ).

A space is locally compact if every point has a open neighborhood with
compact closure. It is known that every open subset of a compact Hausdorff
space is locally compact. Conversely, for each locally compact Hausdorff
space X there is a compact Hausdorff space known as the one-point com-
pactification of X, and X is homeomorphic to an open subset of its one-point
compactification. To obtain the one-point compactification of a locally com-
pact Hausdorff space X, we add a single point x∞ to X and place x∞ in each
open subset of X with compact complement. It is known that the one-point
compactification of a locally compact complete separable metric space is a
compact metric space.

Every locally compact second-countable space is completely metrizable,
but there are separable compact Hausdorff nonmetrizable spaces (e.g., a
space 2X with X uncountable of cardinality ≤ 2ℵ0) as well as non-locally-
compact complete separable metric spaces (e.g., the Baire space ωω). There-
fore, the next theorem does not imply, and is not implied by, Theorem 2.3.9.
Note that a locally compact T0 space is Hausdorff if and only if it is regular.

Theorem 2.3.11. Every locally compact Hausdorff space is homeomor-
phic to an MF space.

Proof. Let P consist of the open subsets of X with compact closure. For
p, q ∈ P we let p ¹ q if p = q or cl(p) ⊆ q. Note that, because p ⊆ cl(p), if
p ¹ q and q ¹ p then p = q. Therefore ¹ is partial order relation on P .

For each point x ∈ X, we let

F (x) = {p ∈ P | x ∈ p}.

Claim 1. For any point x ∈ X, the set F (x) is a filter. Given p, q ∈ F (x),
let r be the open set p ∩ q. So x ∈ r. Choose an open neighborhood s of x
such that cl(s) ⊆ r (using regularity). Then cl(s) is compact, because cl(p)
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is compact and s ⊆ p; also cl(s) ⊆ (p ∩ q). Thus s ∈ P ; s ¹ p and s ¹ q;
and x ∈ s. This shows that F (x) is a directed set. It is clear that F (x) is
upward closed. This proves Claim 1.

Claim 2. For each point x the set F (x) is a maximal filter. Given x, let
p be any open set not in F (x). Let y be any point in p. Use axiom T1 to
obtain open sets q and r such that x ∈ q \ r and y ∈ r \ q. By intersecting,
we may assume r ⊆ p.

Assume for a contradiction that we can add p to F (x) and extend the
result to a filter G. Since G contains q and r, and r 6¹ q, G must contain
an open set s with s ¹ r. This means cl(s) ⊆ r. Since x 6∈ r, we see that
x 6∈ cl(s). Choose an open set q′ such that x ∈ q′ and q′∩s = ∅. Now q′ ∈ G
and s ∈ G, but q′ ⊥ s. We have reached a contradiction, which completes
the proof of Claim 2.

We have now proved that for each point x there is a unique maximal
filter F (x). We next show that each maximal filter of P is obtained as F (x)
for some x.

Claim 3. For each maximal filter F on P there is a point x ∈ X such
that F = F (x). Given any filter F , let F ′ = {cl(s) | s ∈ F}. Any finite
intersection of elements of F ′ is nonempty, because any finite collection of
elements of F has a common extension in F . Therefore there is a point
x ∈ ⋂

F ′, because F ′ has the finite intersection property (recall that each
t ∈ F ′ is compact). We will show x ∈ ⋂

F .
First assume there is a minimal element p ∈ F . Then p must be a one-

point open set, by an application of the T1 and T3 axioms. Now the T1

axiom implies that every one-point set is closed. Therefore p is a closed set,
so x ∈ cl(p) = p =

⋂
F .

Now assume that there is no minimal element in F . Let p ∈ F be fixed.
Let q ∈ F be an extension of p. Then x ∈ cl(q) ⊆ p, so x ∈ p. Because p was
arbitrary, we have shown x ∈ ∩F . Therefore, by maximality, F = F (x).

We now show that the map F : x 7→ F (x) is a homeomorphism from X
to MF(P ). We have already shown the map is bijective. Recall that the
open sets in P form a basis for X. For p ∈ P , we have (by duality and
definition)

x ∈ p ⇔ p ∈ F (x) ⇔ F (x) ∈ Np.

This implies that the map F is a homeomorphism.

In Section 4.4, we will prove in second-order arithmetic that the one-
point compactification of a locally compact complete separable metric space
is a compact metric space.
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If P is a countable poset then UF(P ) and MF(P ) are second-countable
topological spaces. Establishing a converse to this statement is, apparently,
difficult.

Open Problem 2.3.12. Let P be an uncountable poset such that MF(P )
is a second-countable topological space. Must there be a countable poset R
such that MF(P ) is homeomorphic to MF(R)? The corresponding question
for UF spaces is also open.

2.3.2 Subspaces and product spaces

In this section, we show that the class of MF spaces is closed under arbitrary
topological products. We also show that every nonempty Gδ subset of an
MF space is itself an MF space.

Definition 2.3.13. Let 〈Pi | i ∈ I〉 be an indexed collection of posets. We
define the restricted product poset P =

∏̃
i∈IPi. The elements of this poset

are functions p such that the domain of p is a finite subset of I and p(i) ∈ Pi

for all i in the domain (note that
∏̃

Pi is not a direct product). The order
relation ¹ on P is obtained by setting p ¹ p′ if and only if the domain of p
includes the domain of p′ and p(i) ¹Pi p′(i) for all i in the domain of p′.

For each i ∈ I we define a partial function πi : P → Pi by letting
πi(p) = p(i) if i is in the domain of p; πi(p) is undefined otherwise. For
S ⊆ ∏̃

i∈IPi and i ∈ I, we define

πi(S) = {q ∈ Pi | there is a p in S such that πi(p) = q}.

We omit the straightforward proof of the following lemma.

Lemma 2.3.14. If 〈Pi | i ∈ I〉 is an indexed collection of posets and F is
a filter on

∏̃
i∈IPi then πi(F ) is a filter on Pi for each i ∈ I.

We use the lemma to prove the class of MF spaces is closed under topo-
logical products.

Theorem 2.3.15. For any indexed collection 〈Pi | i ∈ I〉 of posets, the
topological product space

∏
i∈I MF(Pi) is homeomorphic to MF(

∏̃
i∈IPi).

Proof. Let Fi ∈ MF(Pi) for i ∈ I. We define a set F =
∏̃

i∈IFi as the
collection of all finite sequences 〈pi1 , . . . , piN 〉 such that pin ∈ Fin and ij 6=
ik whenever j 6= k. It is straightforward to verify that F is a filter on
P =

∏̃
i∈IPI , because Fi is a filter for each i. Moreover, πi(F ) = Fi for all i.
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Now suppose that F is not a maximal filter. Choose p = 〈pi1 , . . . , piN 〉 ∈
P \ F such that F ∪ {p} extends to a filter F ′. There must be an n ≤ N
such that pin 6∈ Fin ; otherwise p ∈ F . Let F ′

i = πi(F ′). Then Fi ( F ′
i ,

contradicting the assumption that Fi is maximal. This shows that F is a
maximal filter. Hence the map φ :

∏
i∈I MF(Pi) → MF(

∏̃
i∈IPi) defined by

φ(〈Fi〉) =
∏̃

Fi is well defined. It is straightforward to check that φ is a
homeomorphism.

Corollary 2.3.16. If 〈Pi | i ∈ ω〉 is a sequence of countable posets then the
topological product space

∏
i∈ω MF(Pi) is homeomorphic to a space MF(P ),

where P is a countable poset.

We note that the product poset construction seems to require the use
of maximal filters. It is not known if the class of UF spaces is even closed
under finite topological products.

Open Problem 2.3.17. Suppose that P and Q are posets. Must there be
a poset R such that UF(P )× UF(Q) ∼= UF(R)? If P and Q are countable,
can we take R to be countable?

A Gδ subspace of a topological space is the intersection of countably
many open sets; an Fσ subspace is the union of countably many closed sets.

Theorem 2.3.18. For every poset P and every nonempty Gδ subspace U
of MF(P ) there is a poset Q such that U ∼= MF(Q). If P is countable then
we may take Q to be countable.

Proof. We may assume that P has no minimal elements. Let 〈Ui | i ∈ ω〉
be a sequence of open sets such that U =

⋂
i Ui is a nonempty Gδ subspace

of MF(P ).
We define Q to be the set of pairs 〈n, p〉 ∈ ω×P such that n > 0, p ∈ P ,

Np ⊆
⋂n

j=0 Uj , and Np∩U 6= ∅. We let 〈n, p〉 ≺Q 〈m, q〉 if m < n and p ≺ q.
Clearly, Q is countable if P is countable.

Given 〈n, p〉 ∈ Q, we may pick a point x ∈ Np ∩ U . Because x ∈ Un+1,
there is some q such that x ∈ Nq ⊆ Un+1. Thus, if we let r be a common
extension of p and q in x then 〈n + 1, r〉 ∈ Q and 〈n + 1, r〉 ≺Q 〈n, p〉. This
shows that Q has no minimal elements.

Suppose that we are given a point x ∈ U . We define F (x) ⊆ Q by

F (x) = {〈n, p〉 | x ∈ Np and Np ⊆
⋂n

i=0 Ui} .

This is the set of all conditions in Q which are compatible with x. Note that
F (x) is a filter.
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We now show that F (x) is a maximal filter. Suppose that there is some
〈n, p〉 ∈ Q such that F (x)∪{〈n, p〉} extends to a filter G. Let G′ ⊆ P be the
set of elements of P that appear in G. Clearly x ⊆ G′; since x is maximal,
this means x = G′. Thus x ∈ Np. We conclude F (x) is maximal.

Claim: Let G be any maximal filter on Q. Let G′ be the set of elements
of P that appear in the conditions in G. Then the upward closure of G′ is
a maximal filter on P and the point represented by G′ is in U .

It is straightforward to show that the upward closure of G′ is a filter on
P . Since there are no minimal elements in Q, the numbers n appearing in
the conditions in G must be arbitrarily large; hence any point in the Gδ set
coded by G′ must be in U .

To finish our proof of the claim, we need to show that the upward closure
of G′ is a maximal filter. Suppose that p ∈ P and G′ ∪ {p} extends to a
maximal filter x on P . This implies G ⊆ F (x). Because G is maximal,
G = F (x). Thus p ∈ G. This completes the proof of the claim.

It only remains to check that F is a homeomorphism; this follows from
the fact that x ∈ p ⇔ 〈n, p〉 ∈ F (x) whenever (n, p) ∈ Q.

Theorem 2.3.18 is optimal in a certain sense: the set of rationals is not
a poset space, but is an Fσ subset of the metrizable poset space R. Note
that closed subsets of nonmetrizable poset spaces need not be Gδ subsets;
thus the theorem does not imply that every closed subset of an MF space is
an MF space (see Section 4.5).

We will show in Corollary 2.3.21 that open subspaces of UF spaces are
UF spaces. We do not know if Gδ subspaces of UF spaces are always poset
spaces.

Open Problem 2.3.19. Let P be a poset and let U be an Gδ subset of
UF(P ). Must there be a poset Q such that U ∼= UF(Q)? Must there be a
poset R such that U ∼= MF(R)? If P is countable, may we assume that Q
or R is countable?

Theorem 2.3.18 implies that open subsets of MF spaces are themselves
MF spaces. The next theorem gives a sharper result.

Theorem 2.3.20. Let U be a nonempty open subset of MF(P ). There is
a subposet Q of P such that U is homeomorphic to MF(Q).

Proof. Define Q = {q ∈ P | Nq ⊆ U}, and give Q the order induced as a
subposet of P . We claim that the map f : U → MF(Q) given by x 7→ x ∩Q
is a homeomorphism. We first show that f is well defined. Suppose that
x ∈ U , and assume that there is an r ∈ Q such that f(x)∪ {r} extends to a
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filter y on Q. Then ucl(y) is a filter on P which extends x and contains r;
so r ∈ x. Thus f(U) ⊆ MF(Q).

It is clear that f is an injective, and that f is a continuous open map.
We must show that f is surjective. Let y ∈ MF(Q), and let x be the upward
closure of y in P . We claim that x ∈ MF(P ). Let r ∈ P be such that
x∪{r} extends to a filter x′ on P . Choose any p ∈ y and let q be a common
extension of p and r in x′. Then q ∈ Q, which means that q ∈ Q ∩ x′. Thus
q ∈ y, because y is a maximal filter. This shows that r ∈ x. We conclude x
is maximal.

Corollary 2.3.21. Let U be a nonempty open subset of UF(P ). There is
a subposet Q of P such that U is homeomorphic to UF(Q).

Proof. The proof is a straightforward modification of the proof of Theo-
rem 2.3.20.

2.3.3 Poset spaces and games

Definition 2.3.22. Let P be a poset. We define a variant of the star game
(Definition 2.2.2) called the poset star game. To play the poset star game
on P , both players play elements of P rather than open sets, we replace
requirement (2.2.1) with the requirement

Vi+1(j) ¹P Vi(ki) for all i ∈ ω and j ∈ {0, 1},

and we let i win if this requirement is always followed and moreover Vk(0) ⊥
Vk(1) for all k ∈ ω.

Lemma 2.3.23. The poset star game on any poset is determined.

Proof. The legal moves for each player at any fixed stage form a closed subset
of all the moves (because the topology on the set of moves is discrete). Hence
the set of all plays with only legal moves is closed. The set of all plays such
that Vk(0) ⊥ Vk(1) for all k is closed. Therefore the set of winning plays for
i is closed. By Theorem 2.2.1, the game is determined.

We will now use the poset star game to obtain results on the cardinality
of Hausdorff poset spaces. We will show that a Hausdorff countably based
MF space is either countable or has cardinality 2ℵ0 , while a Hausdorff UF
space is either countable or has a perfect subset.

25



Lemma 2.3.24. Let X be a Hausdorff poset space based on a countable
poset P . Suppose that i has a winning strategy for the poset star game on
P . Then X has cardinality 2ℵ0 .

Proof. It suffices to prove the result for MF(P ), which is a subset of UF(P ).
Let si be a winning strategy for i and let f ∈ 2ω. Consider the play in
which i follows si while ii uses f as a guide; that is, ii plays f(n) at stage
2n. Because si is a winning strategy for i, this play determines a descending
sequence F (f) of elements of P . This sequence extends to a maximal filter.
For distinct f, g ∈ 2ω the sequences F (f) and F (g) contain incompatible
elements and thus cannot extend to the same filter. Therefore the space
MF(P ) has cardinality 2ℵ0 .

Lemma 2.3.25. Let P be a countable poset in which i has a winning
strategy for the poset star game. Assume UF(P ) is Hausdorff. Then UF(P )
has a perfect subset.

Proof. We show how the proof of Lemma 2.3.24 gives a perfect subset of
UF(P ). Recall that for each f ∈ 2ω the strategy for i gives a filter on P ;
let F (f) denote this filter. If f and g are distinct elements of 2ω then the
associated filters F (f) and F (g) contain incompatible elements.

Not every filter of the form F (f) can be bounded. There are only count-
ably many elements in P to serve as lower bounds, and no single element can
be the lower bound for F (f) and F (g) if f 6= g. Let B ⊆ 2ω consist of those
f such that F (f) is bounded. Then B is countable, so 2ω \ B contains a
perfect subset D. It is straightforward to check that the set {F (g) | g ∈ D}
is a perfect subset of UF(P ).

Lemma 2.3.26. Let X be a countably based Hausdorff poset space based
on the poset P . If ii has a winning strategy for the poset star game on P
then X is countable.

Proof. Let sii be a winning strategy for ii. We say that a finite play σ
of length 2k is compatible with sii if sii(σ[2i + 1]) = σ(2i + 2) whenever
2i + 2 ≤ k. We say that a play σ of even length is a good play for a point x
if σ is compatible with sii and x is in the open set chosen by ii in the last
move of σ. A good play for x is a maximal play if it cannot be extended to
a longer good play for x; this means that no matter what pair of disjoint
open sets i plays, sii will direct ii to choose an open set not containing x.

If ii has a winning strategy then every point x has a maximal play. Note
that the empty play is trivially a good play for x. If every good play for x
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could be extended to a larger good play for x, then it would be possible for
player i to win the game by always leaving the game in a position that is
good for x. This play of the game would follow sii, a winning strategy for
ii, which is a contradiction.

If σ is a good play for two points x and y then σ is not a maximal play
for both x and y. For i could play 〈U1, U2〉 in response to σ, where x ∈ U1,
y ∈ U2, and U1 ∩ U2 = ∅. Here we are using the assumption that the
topology of X is Hausdorff.

We have now shown that every point in the X has a maximal play, and
that no play is maximal for two points. Since the set of maximal plays is
countable, this implies that the set of points in X is countable.

Theorem 2.3.27. A countably based Hausdorff poset space either count-
able or has cardinality 2ℵ0 . If P is countable and UF(P ) is an uncountable
Hausdorff space then UF(P ) contains a perfect subset.

Proof. By Lemmas 2.3.23–2.3.26.

In Section 4.5, we determine which set existence axioms are required to
prove a formalized version of Theorem 2.3.27 for Hausdorff UF spaces in
second-order arithmetic.

Open Problem 2.3.28. Suppose that X is a countably based Hausdorff
MF space which is uncountable. We have shown that X has cardinality 2ℵ0 .
Must X have a perfect subset? We will show in Section 4.5 that the related
proposition “Every closed subset of a countably based Hausdorff MF space
is either countable or contains a perfect subset” is independent of ZFC.

We now use the strong Choquet game to show that every metrizable
poset space is completely metrizable. Keye Martin [Mar03] has given a
parallel analysis of topological spaces represented as maximal elements of a
domain.

Theorem 2.3.29. Every poset space is a strong Choquet space.

Proof. We describe the strategy for ii informally. At the start of the game,
player i plays an open set U0 and a point x0. Player ii translates the point x0

into a filter on P , then finds a basic neighborhood q0 of x such that Nq0 ⊆ U0.
Player ii then plays Nq0 . Now given 〈x1, U1〉 with x1 ∈ Nq0 , ii translates x1

to a filter on P and then finds a neighborhood q1 of x1 such that q1 ¹P q0

and Nq1 ⊆ U1. Player ii plays Nq1 . Player ii continues this strategy, always
choosing qi+1 ¹P qi. At the end of the game, ii has determined {qi | i ∈ ω},
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a descending sequence of elements of P . This sequence of elements extends
to a maximal filter, giving a point x ∈ ⋂

Nqi . Player ii has thus won the
game.

Corollary 2.3.30. Every poset space which is metrizable is completely
metrizable.

Proof. Combine Theorems 2.3.29 and 2.2.5.

Corollary 2.3.31. Every poset space has the property of Baire.

Proof. Combine Theorems 2.3.29 and 2.2.4.

We now obtain a complete characterization of the metrizability and com-
plete metrizability of countably based poset spaces.

Theorem 2.3.32. Let X be a countably based poset space. The following
are pairwise equivalent:

1. X is a regular topological space.

2. X is metrizable.

3. X is completely metrizable.

Proof. The implication (1)⇒(2) follows from Urysohn’s Metrization The-
orem. The implication (2)⇒(3) follows from Theorem 2.2.5 and Theo-
rem 2.3.29. We sketch a proof of the the final implication, (3)⇒(1), which
is well known. Let d be a metric on X and let B(x, r) be any open ball
around x ∈ X, where r ∈ Q+; then cl(B(x, r/2)) ⊆ B(x, r). It follows that
X is regular.

There are countably based Hausdorff MF spaces which are not regular;
such spaces cannot be metrizable. Thus statement (1) in Theorem 2.3.32
cannot be replaced with the statement that X is Hausdorff. One exam-
ple of a nonregular Hausdorff countably based MF space was given in Ex-
ample 2.3.7. Another example is the Gandy–Harrington space (see Sec-
tion 2.3.4).

Theorems 2.3.15 and 2.3.18 have natural analogues for the class of com-
plete separable metric spaces and for the class of strong Choquet spaces. It
is well known that every Gδ subset of a complete separable metric is com-
pletely metrizable (we will prove this in RCA0 in Lemma 4.3.18), and it is
not difficult to show that a Gδ subset of a strong Choquet space is strong
Choquet. Both the class of complete separable metric spaces and the class
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of strong Choquet spaces are closed under countable products. Every poset
space is a strong Choquet space. These similarities between strong Choquet
spaces and MF spaces suggest the following question.

Open Problem 2.3.33. Is every strong Choquet space homeomorphic to
a poset space? Is every second-countable strong Choquet space homeomor-
phic to a countably based poset space?

Open Problem 2.3.34. Is there an MF space that is not homeomorphic
to a UF space? If P is countable, must there be a countable poset Q such
that MF(P ) ∼= UF(Q)? It follows from Theorem 2.3.32 and Corollary 2.3.10
that every metrizable MF space is a UF space. It is known that, under the
set-theoretic assumption V = L, there is a countably based MF space that
is not homeomorphic to any UF space.

Remark 2.3.35. Some well-known subspaces of product topologies are
not strong Choquet spaces, and thus are not poset spaces.

Let Y be an infinite-dimensional Banach space. We let Y ∗
w denote the

dual space of Y , which consists of the bounded linear functionals on Y , with
the weak-∗ topology, that is, the topology of pointwise convergence. We now
show that Y ∗

w is not a strong Choquet space, and thus is not a poset space.
Let 〈ci | i ∈ N〉 be an infinite linearly independent sequence of unit vectors
in Y . Player i begins by playing the open set U1 = {φ ∈ Y ∗

w | φ(c1) > 1}
and an element of y1 ∈ Y ∗

w in this set; such a functional exists by the
Hahn-Banach theorem. Player ii plays an open subset of Y ∗

w ; i chooses
a basic open subset V1 of the set played by ii such that y1 ∈ V1 ⊆ U1.
There will be an N1 such that the basic open set does not restrict the
values of the functional on yn for n ≥ N1. Player i next plays the open set
U2 = V1∩{φ ∈ Y ∗

w | φ(cN1) > 2} and a functional in it. In this way, i chooses
a sequence of open sets U1 ⊇ U2 ⊇ U3 ⊇ · · · such that no functional in Ui

has norm less than i. There can be no bounded linear functional in
⋂

Ui.
A similar proof shows that the space C([0, 1]) of continuous real-valued

functions on the unit interval with the topology of pointwise convergence is
not a strong Choquet space.

2.3.4 The Gandy–Harrington space

Recall that ω = {0, 1, 2, . . .} is the set of natural numbers. The standard
topology on the space ωω is obtained by giving ω the discrete topology
and giving ωω the product topology. There is another important topology
on ωω which has more open sets than the product topology. The Gandy–

29



Harrington space is the set ωω with this alternate topology. This space
is of great importance in descriptive set theory; see [Kec95], [MK80] and
[HKL90, pp. 907–908]. The purpose of this section is to show that the
Gandy–Harrington space is (homeomorphic to) an MF space. This result
is particularly interesting to us because the Gandy–Harrington space is a
nonmetrizable second-countable Hausdorff space.

Definition 2.3.36. A computable tree on ω×ω is a nonempty computable
set of finite sequences of pairs of integers which is closed under taking initial
segments. The word computable is used in the sense of computability theory,
as described by Rogers [Rog67].

For T a computable tree on ω× ω, we let [T ] denote the set of all paths
through T . A function f : ω → ω×ω is a path through T if 〈f(0), . . . , f(n)〉 ∈
T for all n ∈ ω. We define a projection p1 : [T ] → ωω by letting (p1(f))(n)
be the first coordinate of the pair f(n) for all f ∈ [T ] and n ∈ ω. Let p1(T )
denote the set of all projections of elements of [T ]: p1(T ) = {p1(f) | f ∈
[T ]} ⊆ ωω.

We are now prepared to define the Σ1
1 subsets of ωω, which will be the

basic open sets of the Gandy–Harrington space. The definition given here is
not the standard one in mathematical logic, but is equivalent to the standard
definition (see [Sim99, Theorem V.1.7]).

Definition 2.3.37 (Σ1
1 sets). A subset A of ωω is called Σ1

1 if and only if
there is a computable tree T on ω × ω such that A = p1(T ).

The Gandy–Harrington space is the set ωω with the unique topology
having as a basis the collection of Σ1

1 subsets of ωω. This is a finer topology
than the usual (product) topology on ωω.

Theorem 2.3.38. The Gandy–Harrington space is (homeomorphic to) a
countably based MF space.

Proof. We begin by defining a poset P . We will show that the Gandy–
Harrington space is homeomorphic to MF(P ). For the purposes of this proof,
a condition is a finite list of the form 〈σ, 〈T1, τ1〉, 〈T2, τ2〉, . . . , 〈Tk, τk〉〉, where
σ, τ1, τ2, . . . , τk ∈ ω<ω, |σ| = |τ1| = · · · = |τk|, and each Ti is a computable
tree on ω × ω. A condition is called consistent with f ∈ ωω if σ ⊆ f and
there are functions g1, . . . , gk ∈ ωω such that τi ⊆ gi and 〈f, gi〉 ∈ [Ti] for
i ≤ k. A condition is consistent if it is consistent with some f . Let P be
the set of all consistent conditions.

Each consistent condition codes a nonempty Σ1
1 set. Namely, the condi-
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tion 〈σ, 〈T1, τ1〉, 〈T2, τ2〉, . . . , 〈Tk, τk〉〉 codes the set of all f ∈ ωω such that
σ ⊆ f and for all i ≤ k there is a gi ∈ ωω such that τi ⊆ gi and 〈f, gi〉 ∈ [Ti].

Let c =
〈
σ, 〈T1, τ1〉, . . . , 〈Tk, τk〉

〉
and let c′ =

〈
σ′, 〈T ′1, τ ′1〉, . . . , 〈T ′j , τ ′j〉

〉
.

We define a strict partial order relation ≺ on P by declaring c′ ≺ c if and
only if σ ⊆ σ′, |σ| < |σ′| and for each i ≤ k there is a i′ ≤ j such that
Ti = T ′i′ and τi ⊆ τ ′i′ . It is straightforward to verify that ≺ is a partial order
on P . Note that c′ ¹ c implies that the Σ1

1 set coded by c′ is a subset of the
Σ1

1 set coded by c, but the reverse implication is false. Also note that for
every c ∈ P there is a c′ ∈ P with c′ ≺ c.

We now define a homeomorphism φ between the Gandy–Harrington
topology on ωω and MF(P ). Note that each maximal filter F on P must
contain an infinite descending sequence. For otherwise the filter would con-
tain a ≺-minimal consistent condition, which is impossible. Therefore the
elements σ appearing in F determine a unique f in ωω. Let φ(F ) = f .

Claim: If F is a filter on P containing the infinite descending sequence
cn, which determines a function f , and c is any condition in F then c is
consistent with f . Without loss of generality we may assume that c is of the
form

〈
σ, 〈T, τ〉〉. The claim is proved by using common extensions of cn and

c to build sequences 〈σi〉 and 〈τi〉 such that in the end f =
⋃

σi and
⋃

τi is
a witness that f ∈ p1(T ).

Fix f ∈ ωω and let F be the set of all conditions consistent with f . The
claim above shows that F is a maximal filter. Moreover φ(F ) = f ; hence φ
is surjective.

Now fix F, G ∈ MF(P ) such that φ(F ) = φ(G). Choose any condition
c ∈ F . By the claim, c is consistent with φ(F ). Hence c is also consistent
with φ(G). It follows that G ∪ {c} extends to a filter. Since G is maximal,
this implies that c ∈ G. We have shown G ⊆ F ; the reverse inclusion follows
from the same argument. Therefore F = G. This shows that φ is injective.

For c ∈ P , the set φ(Nc) consists of exactly those f ∈ ωω which are in
the Σ1

1 set coded by c. Hence the image of an open set under φ is open.
Let A be a Σ1

1 subset of ωω. Let TA be a computable tree on ω×ω such
that A = p1(TA). Then φ−1(A) = Nc where c =

〈〈 〉, 〈TA, 〈 〉〉〉 (where 〈 〉
denotes the empty sequence). Therefore φ is continuous.

The following corollary, which is well known, follows from the previous
theorem and Theorem 2.3.29.

Corollary 2.3.39. The Gandy–Harrington space has the strong Choquet
property.

The next two theorems are well known. We sketch their proofs briefly.

31



Theorem 2.3.40. The Gandy–Harrington space is not regular, and thus
not metrizable.

Proof sketch. Because the Gandy–Harrington space is second countable, it
would be metrizable if it were were regular. If the space were metrizable,
every closed subset of the topology would be a Gδ subset. It is well known
that there are Π1

1 (hence, closed in the Gandy–Harrington topology) subsets
of ωω which are not boldface Σ1

1. Every Gδ subset of the Gandy–Harrington
space is boldface Σ1

1, because every open set in the Gandy–Harrington space
is boldface Σ1

1 and the collection of boldface Σ1
1 sets is closed under countable

intersections. This contradiction shows that the Gandy–Harrington space
cannot be regular.

Theorem 2.3.41. Let U = {f ∈ ωω | ωf
1 = ωCK

1 }. Then U is a dense
open subset of the Gandy–Harrington space, and is completely metrizable
in the subspace topology.

Proof sketch. One proof of this theorem is mentioned by Kechris and Lou-
veau [KL97, p. 225]; we will sketch this proof briefly. An alternate proof,
which does not use the strong Choquet property, is given by Hjorth [Hjo02,
Section 2]. Hjorth’s proof exhibits a homeomorphism between U and a Gδ

subset of 2ω, which allows a reasonably explicit complete metric on U to be
defined.

It is well known that U is a Σ1
1 set; thus U is an open subset of the

Gandy–Harrington space. The fact that U is dense is the restatement of
a well-known basis theorem for Σ1

1 sets; a proof is given in Sacks [Sac90,
Corollary 1.5]. The basis theorem may also be obtained as corollary of a
basis theorem due to Gandy, Kriesel, and Tait [GKT60] (compare [Sim99,
Corollary VII.2.12]).

To see that the Gandy–Harrington topology on U is regular, note that
the intersection of U with any Π1

1 set is a countable union of ∆1
1 sets, and thus

every Σ1
1 subset of U is clopen. This shows that U has a clopen basis; any

space with a clopen basis is regular. Since the Gandy–Harrington topology
on U is also second countable, this topology is metrizable. As an open subset
of a strong Choquet space, U inherits the strong Choquet property. Thus
Choquet’s theorem shows that U is completely metrizable.
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2.4 Remarks

In this chapter, we have developed the properties of poset spaces in ZFC
set theory. Our true motivation for studying poset spaces is to formalize
them in second-order arithmetic; it would not be interesting to formalize an
overly limited class of spaces. We have shown that the class of countably
based MF spaces includes all the complete separable metric spaces as well as
many other spaces. This class of MF spaces is closed under taking countable
products and Gδ subspaces, just as the class of complete separable metric
spaces and the class of strong Choquet spaces are. These results show that
we are justified as choosing poset spaces as our formalization of general
topology in second-order arithmetic.

We will use this formalization to determine the Reverse Mathematics
strength of metrization theorems. Urysohn’s Metrization Theorem shows
that every countably based regular poset space is metrizable. We have
shown, as a consequence of Choquet’s Metrization Theorem, that every
metrizable countably based poset space is completely metrizable, and every
separable complete metric space may be represented as a countably based
MF space which is also a UF space; thus every metrizable countably based
poset space will be representable in second-order arithmetic. This shows
that the class of metrizable countably based poset spaces is the same in ZFC
set theory as it is in second-order arithmetic.

Remark 2.4.1 (Filters and convergence). There are two ways of defin-
ing convergence in a topological space. One approach is via sequences (or,
more generally, nets) of points; the other approach is via filters. In this
context, a filter F is a collection of open sets such that the empty set is not
in F , the intersection of two sets in F is in F , and any open superset of
a set in F is in F . A filter F converges to a point if every open neighbor-
hood of the point is in the filter. This terminology, established by Cartan
[Car37a, Car37b], is well known.

Let us temporarily call the filters defined in the previous paragraph
C-filters. We will use the term P-filters to refer to filters on posets, as
we have defined them in Definition 2.3.2. Suppose that X is a poset space
based on a poset P . We wish to compare the P-filters on P with the C-filters
on X. To facilitate the comparison, we identify each p ∈ P with the open
set Np ⊆ X. Note the the intersection of any two sets in a C-filter must be
in the C-filter, while a P-filter satisfies the weaker condition that it contains
an open subset of the intersection of any two open sets it contains. Each
P-filter F thus generates the C-filter {U | U is open and ∃p ∈ F [Np ⊆ U ]}.
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Not every C-filter arises in this way, however; it can be seen that a C-filter
is obtained from a P-filter if and only if there is a point of X in the intersec-
tion of the open sets in the C-filter. This illustrates the role of the partial
ordering on P : it must control descending sequences of poset elements so
that the intersection of the corresponding open sets remains nonempty. This
difference is highlighted by the classical theorem that a topological space is
compact if and only if every maximal C-filter on the space converges. By
definition, every maximal P-filter converges, even if MF(P ) is not compact.
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Chapter 3

Formalized Poset Spaces

The previous chapter considered poset spaces from the point of view of con-
temporary mathematics. In the present chapter, we shift our point of view
to that of mathematical logic. We formalize poset spaces in second-order
arithmetic. We assume the reader has some familiarity with the essentials
of mathematical logic; one good reference is by Monk [Mon76].

3.1 Subsystems of second-order arithmetic

This section presents a survey of subsystems of second-order arithmetic.
Because the results in this section are well known, we present them without
proof. The monograph by Simpson [Sim99] gives a complete reference for
subsystems of second-order arithmetic and includes proofs of all the results
stated here.

Despite its name, second-order arithmetic is formalized in first-order
logic. The language has two kinds of variables. Variables of the first kind are
called number variables and are intended to range over ω = {0, 1, 2, 3, . . .}.
Variables of the second kind are called set variables and are intended to
range over P (ω), the collection of all subsets of ω. We use uppercase Roman
letters to denote set variables and lowercase Roman letters to denote number
variables, with the exception that x, y, and z always denote set variables.

Definition 3.1.1. The language of second-order arithmetic, denoted L2,
consists of:

1. Binary function symbols + and · for numbers.

2. Constant number symbols 0 and 1.
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3. A membership relation, ∈, which is intended to tell if a number is in
a set.

4. A binary equality relation, =, for number variables.

5. A binary order relation, <, for number variables.

Equality for sets is not included in L2, but is defined by extensionality:

A = B ≡ ∀n [n ∈ A ⇔ n ∈ B].

Definition 3.1.2. We will denote the formal system of second-order arith-
metic by Z2. The axioms of Z2 fall into three groups. The first group consists
of the basic axioms of first-order number theory, without induction. These
axioms are the universal closures of the following formulas:

1. n + 1 6= 0

2. m + 1 = n + 1 ⇒ m = n

3. m + 0 = m

4. m + (n + 1) = (m + n) + 1

5. m · 0 = 0

6. m · (n + 1) = m · n + m

7. ¬(m < 0)

8. m < n + 1 ⇔ (m < n ∨m = n)

The second group of axioms is the comprehension scheme, which consists of
the universal closure of

∃S ∀n [n ∈ S ⇔ Φ(n)]

for each formula Φ(n) of L2 in which S is not free. The third group of
axioms is the induction scheme, which consists of the universal closure of

[Φ(0) ∧ ∀n(Φ(n) ⇒ Φ(n + 1))] ⇒ ∀nΦ(n)

for each L2 formula Φ. This axiomatization of second-order arithmetic differs
from the one given in [Sim99] but is equivalent to the one given there.
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Remark 3.1.3. We will always assume without comment the axioms of
classical logic, including the axiom of the excluded middle and the substi-
tution properties of the equality relation. For example, the sentence

∀n ∀m∀X [(n ∈ X ∧m = n) ⇒ m ∈ X]

is an axiom of classical logic.

Definition 3.1.4 (Bounded quantifiers). The numeric terms are the
smallest class of expressions in the language L2 containing the constant
number symbols 0, 1 and the number variables such that t1 + t2 and t1 · t2
are numeric terms whenever t1 and t2 are numeric terms.

Let Φ be any L2 formula. Let t be any numeric term in which the variable
n does not appear. We introduce the bounded quantifiers ∀n < t and ∃n < t.
By definition, ∀n < t Φ is an abbreviation for the formula ∀n[n < t ⇒ Φ],
while ∃n < t Φ abbreviates the formula ∃n[n < t ∧ φ].

Definition 3.1.5 (Classification of L2 formulas). There is a classifica-
tion of L2 formulas based on the type and number of alternating quantifiers.
Let Φ be any L2 formula.

• Φ is called arithmetical if Φ has no set quantifiers.

• Φ is called ∆0
0 if Φ has no unbounded quantifiers.

• Φ is called Σ0
k, for k ∈ ω, if Φ is equivalent to a formula of the form

∃n1 ∀n2 ∃n3 · · · Qknk Θ,

where there are k alternating number quantifiers beginning with ∃ and
Θ is ∆0

0. Here Qk is ∀ if k is even, ∃ if k is odd.

• Φ is called Π0
k, for k ∈ ω, if Φ is equivalent to a formula of the form

∀n1 ∃n2 ∀n3 · · · Qknk Θ,

where there are k alternating number quantifiers beginning with ∀ and
Θ is ∆0

0. Here Qk is ∃ if k is even, ∀ if k is odd.

• Φ is called Σ1
k, for k ∈ ω, if Φ is equivalent to a formula of the form

∃X1 ∀X2 ∃X3 · · · QkXk Θ,

where Θ is arithmetical and there are exactly k alternating set quan-
tifiers. Here Qk is ∀ if k is even, ∃ if k is odd.
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• Φ is called Π1
k, for k ∈ ω, if Φ is equivalent to a formula of the form

∀X1 ∃X2 ∀X3 · · · QkXk Θ,

where Θ is arithmetical and there are exactly k alternating set quan-
tifiers. Here Qk is ∃ if k is even, ∀ if k is odd.

A subsystem of Z2 is an L2 theory whose axioms are logical consequences
of the axioms of Z2 (see Definition 3.1.2). All the subsystems we consider
will include the basic axioms of Z2 and the axioms of classical logic. We now
survey the following subsystems of Z2, listed in increasing order of logical
strength: RCA0, WKL0, ACA0, ACA+

0 , ATR0, Π1
1-CA0, and Π1

2-CA0.

The subsystem RCA0

The subsystem RCA0 consists of the basic axioms, those instances of the
comprehension scheme with formulas that are equivalent to both Σ0

1 and
Π0

1 formulas (the ∆0
1 comprehension scheme), and those instances of the

induction scheme with Σ0
1 formulas. RCA is an abbreviation for “Recursive

Comprehension Axiom.” See [Sim99, Section I.7] for a precise definition of
RCA0.

Proposition 3.1.6. RCA0 proves the following:

1. The exponential function 〈m,n〉 7→ mn is defined for all m,n ∈ N.
There are infinitely many primes and every number is a unique finite
product of powers of primes.

2. Every infinite subset of N is the range of an injective function from N
to N. We call such a function an enumeration of the set.

3. For each set X ⊆ N and each n ∈ N the set (X)n = {m | 2n3m ∈ X}
exists. We may view X as a code for a sequence of open sets 〈Xn |
n ∈ N〉, where Xn = (X)n for each n ∈ N. In this way, it is possible
to quantify over sequences of sets.

Definition 3.1.7. (RCA0) We define a function from N to N to be a subset
f of {2n3m | n,m ∈ N} such that for each n ∈ N there is exactly one m ∈ N
with 2n3m ∈ f ; we let f(n) denote this element m.

Simpson [Sim99, Section II.4] has given definitions of the number systems
Q and R in RCA0, which we follow in this thesis. We summarize these
definitions here. Elements of Q are represented as ordered pairs of natural
numbers, with a natural equivalence relation. A real number is represented
by a sequence 〈qi〉 ⊆ Q such that |qi − qj | < 2−i whenever i < j.
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Definition 3.1.8. (RCA0) A countable pseudometric space consists of a
nonempty set A ⊆ N and a sequence d of real numbers indexed by pairs of
elements of A; this sequence is viewed as a function d : A × A → R. We
require that d(a, a) = 0, d(a, b) = d(b, a), and d(a, b) ≤ d(a, c) + d(c, b) for
all a, b, c ∈ A.

A strong Cauchy sequence on a countable pseudometric space 〈A, d〉 is a
sequence 〈ai | i ∈ N〉 ⊆ A such that d(ai, aj) < 2−i whenever i ≤ j.

Definition 3.1.9. (RCA0) A complete separable metric space Â is defined
to consist of all the strong Cauchy sequences on a countable pseudometric
space A. For z = 〈ai〉 and z′ = 〈a′i〉 in Â, we let d(z, z′) be the real number
given by the strong Cauchy sequence 〈d(ai+2, a

′
i+2) | i ∈ N〉. We define an

equality relation on Â by letting z = z′ if and only if d(z, z′) = 0.

Simpson [Sim99, Section II.5] has shown that many properties of com-
plete separable metric spaces may be established in RCA0.

The subsystem WKL0

In RCA0, we define 2<N to be the set of all finite sequences of elements of
{0, 1} and N<N to be the set of all finite sequences of elements of N. We say
that T ⊆ N<N is a tree if whenever σ ∈ T and τ is an initial segment of σ
we have τ ∈ T . If f is a function from N to N and n ∈ N, we write f [n] for
the sequence 〈f(0), f(1), . . . , f(n − 1)〉. We say that f is a path through T
if f [n] ∈ T for all n ∈ N. A tree T is finitely branching if for all σ ∈ T of
length n there are only finitely many τ ∈ T of length n + 1 extending σ. A
classical theorem known as König’s Lemma states that any infinite finitely
branching tree has a path.

The subsystem WKL0 contains RCA0 and a weak form of König’s Lemma
which says that if T is an infinite subtree of 2<N then there is a path
through T . See [Sim99, Section I.10] for a precise definition of WKLo.

The subsystem ACA0

The subsystem ACA0 consists of the basic axioms, those instances of the
comprehension scheme with arithmetical formulas, and those instances of
the induction scheme with arithmetical formulas. ACA is an abbreviation
for “Arithmetical Comprehension Axiom.” See [Sim99, Section I.3] for a
precise definition of ACA0.

In this thesis, we will show that various theorems imply ACA0 over RCA0.
To establish such results, it will be convenient to have a single L2-sentence
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which implies ACA0 over RCA0. The next theorem provides such a sentence.

Theorem 3.1.10. ACA0 is equivalent over RCA0 to the proposition that
whenever f codes a function from N to N the set {m | ∃n[f(n) = m]} (that
is, the range of f) exists.

The subsystems ACA+
0 and ATR0

The subsystem ACA+
0 consists of ACA0 along with an axiom scheme which

states than an arithmetically defined functional P (N) → P (N) may be iter-
ated along N. A precise definition of ACA+

0 is given in [Sim99, Section X.3]
(see also [BHS87]).

The subsystem ATR0 consists of ACA0 along with an axiom scheme which
states than an arithmetically defined functional P (N) → P (N) may be iter-
ated along any countable well-ordering of N. See [Sim99, Section I.11] for a
precise definition of ATR0.

Theorem 3.1.11. ATR0 proves the Σ1
1 choice scheme, which consists of

the universal closure of each formula of the form

∀n∃X Φ(n,X) ⇒ ∃Z ∀nΦ(n, (Z)n),

in which Φ is a Σ1
1 formula.

Proof. See [Sim99, Theorem V.8.3].

The subsystems Π1
1-CA0 and Π1

2-CA0

The subsystem Π1
1-CA0 consists of the basic axioms, those instances of the

comprehension scheme with Π1
1 formulas, and those instances of the induc-

tion scheme with Π1
1 formulas. A precise definition of Π1

1-CA0 is given in
[Sim99, Section I.5].

We will use the following equivalence to show that certain theorems
about poset spaces are equivalent to Π1

1-CA0 over RCA0.

Theorem 3.1.12. The following are equivalent over RCA0:

1. Π1
1-CA0

2. For each sequence of trees 〈Tk | k ∈ N〉, Tk ⊆ N<N, there is a set X
such that ∀k [k ∈ X ⇔ Tk has a path].

Proof. See [Sim99, Lemma VI.1.1].
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The subsystem Π1
2-CA0 consists of the basic axioms, those instances of

the comprehension scheme with Π1
2 formulas, and those instances of the

induction scheme with Π1
2 formulas. A precise definition of Π1

2-CA0 is given
in [Sim99, Section I.5].

Theorem 3.1.13. Π1
2-CA0 proves the Σ1

2 choice scheme, which consists of
the universal closure of each formula of the form

∀n∃X Φ(n,X) ⇒ ∃Z ∀nΦ(n, (Z)n).

in which Φ is a Σ1
2 formula.

Proof. See [Sim99, Theorem VII.6.9], where a sharper result is obtained.

3.2 Formalization in second-order arithmetic

In this section, we develop the properties of poset spaces (as expounded in
Chapter 2) in second-order arithmetic. The definitions in this section are
intended to be formalized in RCA0.

3.2.1 Poset spaces

Definition 3.2.1. A countable poset is a pair 〈P,R〉, where P ⊆ N and
R ⊆ {2p3q | p, q ∈ P}, such that the binary relation ¹ on P defined by
letting p ¹ q if and only if 2p3q ∈ R makes P a partially ordered set.

The sets UF(P ) and MF(P ) cannot be defined directly in second-order
arithmetic, because these sets are third-order objects. Instead of defining
these sets directly, we will define what it means for a single subset of N
to code an element from one of these sets. (A similar situation arises in
ZFC set theory when proper classes such as the ordinals are identified with
the extensions of their defining formulas.) To simplify our proofs, we will
represent filters by linearly ordered sets that generate them (see Section 4.1
for a justification of this choice). We fix an L2 formula which defines the
relation p ∈ ucl(U) for p ∈ P and U ⊆ P :

p ∈ ucl(U) ≡ ∃q ∈ U [q ¹ p].

We do not assume that ucl(U) exists when we write p ∈ ucl(U). We also fix
an L2 formula LO(U) which states that U is a linearly ordered subset of P :

LO(U) ≡ ∀q ∈ U ∀r ∈ U [q ∈ P ∧ r ∈ P ∧ (q ¹ r ∨ r ¹ q)].
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Definition 3.2.2. We now define which subsets of N code points in poset
spaces:

x ∈ UF(P ) ≡ LO(x) ∧ ∀q ∈ P ∃r ∈ x[q 6≺ r]
x ∈ MF(P ) ≡ LO(x) ∧ ∀y [(LO(y) ∧ x ⊆ ucl(y)) ⇒ y ⊆ ucl(x)]

We have thus defined MF(P ) and UF(P ) to consist of those linearly
ordered subsets of P whose upward closures correspond to the correct type
of filter. Each filter may have many linearly ordered subsets that generate
it; we say that two elements x, y of UF(P ) or MF(P ) are equal, and write
x = y, if x ⊆ ucl(y) and y ⊆ ucl(x).

Remark 3.2.3. The definition of equality for points of a countably based
poset space is similar to the definition of equality for points of complete
separable metric spaces in [Sim99, Section II.5], which we now recall. Two
Cauchy sequences z = 〈ai〉 and z′ = 〈a′i〉 are said to be equal if d(z, z′) =
0. If z and z′ are strong Cauchy sequences, then z = z′ if and only if
∀i[d(ai, a

′
i) < 2−(i+1)]. There is a thus a Π0

1 formula which tells if points of
Â are equal. The formula which tells if points of a countably based poset
space are equal is Π0

2 but not Π0
1.

We code a basic open set Np with the number p. If x is in UF(P ) or
MF(P ) then x ∈ Np if and only if p ∈ ucl(x); so we can easily tell if a coded
point is in a basic open set.

If P is a countable poset then every open subset of UF(P ) (or MF(P )) is
a countable union of basic open sets. We are thus justified in defining a coded
open set to be a subset of P ; each U ⊆ P codes the open set NU =

⋃
p∈U Np.

A point x is in the open set coded by U if and only if there is an r ∈ x such
that r ¹ p for some p ∈ U . Thus the relation which tells if a coded point is
in a coded open set is Σ0

1.
We now present several theorems to justify our choice of coding for

MF(P ) and UF(P ). The first theorem shows that RCA0 proves that UF(P )
is nonempty, and ACA0 proves that MF(P ) is nonempty.

Theorem 3.2.4. Let P be a countable poset and p ∈ P . RCA0 proves
that there is an element of UF(P ) in Np, and ACA0 proves that there is an
element of MF(P ) in Np.

Proof. Write P = 〈pi | i ∈ N〉. We construct an unbounded descending
sequence Q = 〈qi〉 below p by induction. Let q1 = p. Given qi, decide if
pi ≺ qi. If so, let qi+1 = pi. Otherwise, let qi+1 = qi. Clearly 〈qi〉 is an
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unbounded descending sequence. The set Q is ∆0
1; in order for pj to be in

Q it must be that pj = qj+1. Thus RCA0 proves that Q exists.
To construct an element of MF(P ) in Np, we first use arithmetic compre-

hension to form the set A = {〈p, q〉 | p ⊥ q}. We then construct a descending
sequence by induction. Let q1 = p. Given qi, we use A to decide if qi ⊥ pi.
If so, we let qi+1 = qi. Otherwise, we let qi+1 = pk, where k is the least
number such that pk is a common extension of qi and pi. Because Q = 〈qi〉
is eventually below or incompatible with every element of P , the upward
closure of Q is a maximal filter. Thus Q ∈ MF(P ). It is immediate that Q
is definable by an arithmetic formula.

Corollary 3.2.5. In RCA0, we can prove that Np ∩ Nq = ∅ in the sense
of UF(P ) if and only if p ⊥ q. We can prove the corresponding result for
MF(P ) in ACA0.

Proof. If Np ∩ Nq 6= ∅ then there is a descending sequence 〈pi〉 which is
eventually below p and eventually below q. Thus, for large enough k, pk is a
common extension of p and q. Thus RCA0 proves that Np ∩Nq 6= ∅ implies
p 6⊥ q, for both MF(P ) and UF(P ).

For the converse, suppose r ¹ p and r ¹ q. RCA0 proves Nr is nonempty
in the sense of UF(P ); hence Np∩Nq 6= ∅ in UF(P ). Similarly, ACA0 proves
Nr is nonempty in MF(P ).

Corollary 3.2.6. Let P be a countable poset. RCA0 proves that UF(P )
has a countable dense subset. ACA0 proves that MF(P ) has a countable
dense subset.

Proof. Let X be UF(P ) or MF(P ). Because the proof of Theorem 3.2.4 is
uniform, we may follow that proof to construct a sequence 〈Fp | p ∈ P 〉 ⊆ X
such that Fp ∈ Np for p ∈ P . This construction may be performed in RCA0

for UF spaces, and in ACA0 for MF spaces.

Recall that a topological space has the property of Baire if every inter-
section of countably many dense open sets is dense.

Theorem 3.2.7. Let P be a countable poset. RCA0 proves that UF(P )
has the property of Baire, and ACA0 proves that MF(P ) has the property
of Baire.

Proof. The proof is essentially the same as Theorem 3.2.4. We only need to
ensure that our descending sequence meets a countable collection of dense
open sets (that is, we must ensure the descending sequence is eventually
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inside each open set in the collection). We can do this by breaking the
construction into odd and even stages. At stage 2n we perform the action
from stage n of the proof of Theorem 3.2.4. At stage 2n + 1 we meet the
nth dense open set.

Open Problem 3.2.8. Does RCA0 prove that MF(P ) is nonempty? This
question can be rephrased as a question of effective mathematics: Is there
a computable poset P such that for every r.e. linearly ordered set X ⊆ P
there is an r.e. linearly ordered set Y ⊆ P such that ucl(X) ( ucl(Y )? It
can be shown that such a poset must have no minimal elements and the
relation p ⊥ q cannot be computable.

This question is also relevant to a possible reversal of Theorem 3.2.7 for
MF(P ). It is not hard to show that “MF(P ) has the property of Baire”
implies “For every p ∈ P , there is an element of MF(P ) in Np” over RCA0.

3.2.2 Continuous functions

In ZFC, a function f from a space X to a space Y is defined to be a subset of
X × Y such that for each x ∈ X there is exactly one y ∈ Y with 〈x, y〉 ∈ f ;
this y is denoted f(x). Thus a function is a third-order object which may
not be representable in second-order arithmetic if X or Y is uncountable. If
f is a continuous function, however, we may approximate f(x) arbitrarily
well using only sufficiently accurate approximations of x. We use this fact
to define codes for continuous functions on poset spaces.

Definition 3.2.9. (RCA0) Let P and Q be countable posets. Let X be
MF(P ) or UF(P ), and let Y be MF(Q) or UF(Q). A code for a continuous
function is a subset of N × P × Q. Each code F for a continuous function
induces a partial function f from X to Y , defined by letting f(x) = {q ∈
Q | ∃n ∈ N∃p ∈ x [〈n, p, q〉 ∈ F ]} whenever this set is a point in Y . We will
only be concerned with codes that induce total functions from X to Y .

This abstract definition requires justification. We will show, in ZFC, that
every continuous function may be represented. We will show in ACA0 that
the preimage of an open set under a coded continuous function is an open set.
RCA0 is strong enough to evaluate coded continuous functions into the poset
representation of the real numbers. The parameter n in a condition 〈n, p, q〉
allows composition of functions to be carried out in RCA0; see Lemma 4.5.18.
These results indicate that our definition of a code for a continuous function
is acceptable. We discuss additional motivations for our choice of coding at
the end of this section.
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It is clear from the way we have coded continuous functions that if a
point maps into an open set then there is an open neighborhood of the
point which maps into the open set. We use this fact to show, in ACA0, that
every preimage of an open set under a coded continuous function is open.

Proposition 3.2.10. (ACA0) Suppose that P and Q are countable posets,
X is MF(P ) or UF(P ), and Y is MF(Q) or UF(Q). Let F ⊆ N × P × Q
be a code for a continuous function f : X → Y . For every V ⊆ Q there is a
U ⊆ P such that NU = f−1(NV ).

Proof. Let U = {p ∈ P | ∃n ∈ N∃q ∈ V [〈n, p, q〉 ∈ F ]}. It is clear that U
has the desired property.

We now consider the problem of which functions may be encoded. After
considering some basic examples, we show in ZFC that every continuous
function has a code.

Proposition 3.2.11. (RCA0) Let P and Q be countable posets, let X
be UF(P ) or MF(P ), and let Y be UF(Q) or MF(Q). There is a coded
continuous function i : X → X with i(x) = x for all x ∈ X. For each y ∈ Y
there is a coded continuous function cy : X → Y such that cy(x) = y for all
x ∈ X.

Proof. The set {〈0, p, p〉 | p ∈ P} codes the identity function i, while the set
{〈0, p, q〉 | p ∈ P, q ∈ y} codes the constant function cy. Each of these sets
is definable in RCA0. Is straightforward to verify that each of these sets is a
code for the correct continuous function.

Proposition 3.2.12. (ZFC) Let P and Q be countable posets. Let X be
UF(P ) or MF(P ), and let Y be UF(Q) or MF(Q). Let f : X → Y be a
continuous function. Then there is a code F for a continuous function such
that F induces f .

Proof. Let F = {〈0, p, q〉 ∈ P × Q | f(Np) ⊆ Nq}. We will show that F
induces f . Let x ∈ X be fixed and let f(x) = y. We must show F [x] = y.
Fix q ∈ y; since f is continuous, there is some p with x ∈ Np such that
f(Np) ⊆ Nq. Thus 〈0, p, q〉 ∈ F , so q ∈ F [x]. Conversely, if q ∈ F [x] then
there is some p, x ∈ Np, such that 〈0, p, q〉 ∈ F . This implies f(Np) ⊆ Nq,
hence y ∈ Nq. Thus q ∈ y.

We next show that coded continuous functions may be composed in
RCA0. The proof of this result uses the number parameter in the conditions
used to code continuous functions.
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Lemma 3.2.13. (RCA0) Let X,Y, Z be poset spaces based on the count-
able posets P, Q,R, respectively. Suppose that F is a code for a continuous
function f : X → Y and G is a code for a continuous function g : Y → Z.
Then there is a code H for the continuous function g ◦ f : X → Z.

Proof. Let {qi} be an enumeration of Q. We define H to be the set of all
〈n, p, r〉 ∈ N × P × R such that there are m1, m2, i, all less than n, such
that 〈m1, p, qi〉 ∈ F and 〈m2, qi, r〉 ∈ G. The set H may be formed by ∆0

1

comprehension. It is immediate that H is a code for g ◦ f .

Remark 3.2.14. We compare our definition of continuous functions be-
tween countably based poset spaces with the definition of codes for contin-
uous functions between complete separable metric spaces given in [Sim99,
Section II.6]. We summarize this definition. Let 〈Â, dA〉 and 〈B̂, dB〉 be
complete separable metric spaces. A code for a continuous function from Â
to B̂ is defined in RCA0 to be a subset F of N×A×Q+×B×Q+ such that

1. If 〈n, a, r, b, s〉 ∈ F and dA(a′, a) + r′ < r then 〈m, a′, r′, b, s〉 ∈ F for
some m ∈ N.

2. If 〈n, a, r, b, s〉 ∈ F and dB(b, b′) + s < s′ then 〈m, a, r, b′, s′〉 ∈ F for
some m ∈ N.

3. If 〈n, a, r, b, s〉 ∈ F and 〈m, a, r, b′, s′〉 ∈ F then dB(b, b′) < s + s′.

4. For every Cauchy sequence z ∈ Â, there is exactly one point of B̂ in
⋂{

B bB(b, s) | ∃n ∃a∃r [x ∈ B bA(a, r) ∧ 〈n, a, r, b, s〉 ∈ F ]
}
.

In light of this definition, it may seem natural to define a code for a
continuous function between poset spaces X and Y (based on countable
posets P and Q, respectively) to be a subset F of N× P ×Q such that

1. If 〈n, p, q〉 ∈ F and p′ ¹P p then 〈m, p′, q〉 ∈ F for some m ∈ N.

2. If 〈n, p, q〉 ∈ F and p ¹Q q′ then 〈m, p, q′〉 ∈ F for some m ∈ N.

3. If 〈n, p, q〉 ∈ F and 〈m, p′, q〉 ∈ F then for each p′′ ∈ P with p′′ ¹ p and
p′′ ¹ p′ there is a q′′ ∈ Q such that q′′ ¹ q, q′′ ¹ q′, and 〈o, p′′q′′〉 ∈ F
for some o ∈ N.

4. For each point x ∈ X, the set F [x] = {q ∈ Q | ∃n ∈ N∃p ∈ x [〈n, p, q〉}
is an element of Y .

46



We do not know whether every continuous function has a code which satisfies
this definition. We have chosen the weaker definition of coded continuous
functions presented in Definition 3.2.9 because we are able to show (in ZFC)
that every continuous function has a code (Proposition 3.2.12).

3.2.3 Homeomorphisms and metrizability

Definition 3.2.15. (RCA0) Let X and Y be countably based poset spaces
and let h be a continuous function from X to Y . We say that h is open if
the image of each open set in X is open in Y , that is, for every open set
U ⊆ X there is an open set V ⊆ Y such that x ∈ U ⇔ h(x) ∈ V for all
x ∈ X. The function h is weakly open if the image of each basic open set in
X is an open set in Y .

The function h is strongly open if there is an arithmetical functional Φ
such that for every open U ⊆ X the set Φ(U) is open in Y and f(U) = Φ(U).
(We may not be able to form the set Φ(U) in RCA0.)

The following proposition follows directly from definitions.

Proposition 3.2.16. ACA0 proves that every strongly open map is open.
RCA0 proves that every open map is weakly open.

Open Problem 3.2.17. Determine the Reverse Mathematics strengths
of the following propositions.

1. Every continuous open map between countably based MF spaces is
strongly open.

2. Every continuous map between countably based MF spaces which is
weakly open is open.

The same questions may be asked about UF spaces. Does the Reverse Math-
ematics strength of these propositions change if we only consider continuous
surjections, continuous injections, or continuous bijections?

Definition 3.2.18. (RCA0) We say that X and Y are homeomorphic if
there is a coded continuous bijection h : X → Y with a coded continuous
inverse h−1.

Proposition 3.2.19. (RCA0) Every homeomorphism between countably
based poset spaces is strongly open.

Proof. Let X and Y be poset spaces based on the countable posets P and
Q, respectively. Let h : X → Y be given along with the inverse map h−1.
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Let H−1 be the code for h−1. Then, for any coded open U ⊆ X, we have

h(U) = (h−1)−1(U) = {q ∈ Q | ∃p ∈ P ∃n ∈ N [〈n, p, q〉 ∈ H−1}.
It is important to note that the proposition that X is homeomorphic to

Y is, apparently, not equivalent in RCA0 to the proposition that there is a
a continuous open bijection from X to Y .

Open Problem 3.2.20. Determine the Reverse Mathematics strength of
the following propositions. Every continuous open bijection between count-
ably based MF spaces has a continuous inverse. Every continuous open bi-
jection between countably based UF spaces has a continuous inverse. Similar
questions may be asked when one space is a countably based MF space and
the other is a countably based UF space. Similar questions may be asked
concerning continuous strongly open bijections.

Definition 3.2.21. (ACA0) Let Â be a complete separable metric space.
We define the standard poset representation of Â to be the poset P bA =
A×Q+, ordered such that 〈a, r〉 ≺ 〈a′, r′〉 if and only if d(a, a′) + r < r′.

The proof of the next proposition is a straightforward formalization of
the proof of Theorem 2.3.9.

Proposition 3.2.22. (ACA0) Let Â be a complete separable metric space.
There is a canonical arithmetical bijection between Cauchy sequences in Â
and maximal filters on P bA. Moreover, UF(P bA) = MF(P bA).

Definition 3.2.21 is made in ACA0 only because it is not clear that the
order relation on P bA may be formed in RCA0 for an arbitrary complete sep-
arable metric space 〈Â, d〉. In some cases, RCA0 is able to define P bA and
its order relation. In particular, we may form the standard poset represen-
tations of R and [0,∞) in RCA0. RCA0 is able to prove Proposition 3.2.22
with the added assumption that P bA exists.

Open Problem 3.2.23. Does RCA0 prove that for every complete sep-
arable metric space X there is a canonical poset P such that there is an
arithmetical bijection between the points of X and the points of MF(P )?
Can we assume MF(P ) = UF(P )?

Theorem 2.3.9 shows, in ZFC, that MF(P bA) ∼= Â and MF(P bA) = UF(P bA).
For the reset of this thesis, we will identify each complete separable metric
space 〈Â, d〉 with its standard poset representation.

Definition 3.2.24. (ACA0) A countably based poset space X is said to
be homeomorphic to a complete separable metric space if there is a complete
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separable metric space Â such that X is homeomorphic to MF(P bA). This
means, by Definition 3.2.18, that there is a coded continuous bijection from
X to MF(P bA) with a coded continuous inverse.

Definition 3.2.25. (RCA0) A countably based poset space X is metrizable
if there is a continuous function d : X ×X → [0,∞) such that

1. d is a metric. That is, d is symmetric, d(x, y) = 0 if and only if x = y,
and d satisfies the triangle inequality.

2. For each U ⊆ P there is a set {〈xi, ri〉 | i ∈ N} ⊆ X × Q+ such that⋃
p∈U Np =

⋃
B(xi, ri). Here, B(xi, ri) = {x ∈ X | d(x, xi) < ri}.

3. For each {〈xi, ri〉 | i ∈ N} ⊆ X × Q+ there is a set U ⊆ P such that⋃
B(xi, ri) =

⋃
p∈U Np.

We say that d is compatible with the original topology if and only if conditions
(2) and (3) hold. These conditions imply that the topology on X induced
by d is the same as the poset topology on X.

A countably based poset space is completely metrizable if there is a metric
d compatible with the topology on X such that for every strong Cauchy
sequence 〈xi | i ∈ N〉 of points in X there is an x ∈ X such that 〈xi〉
converges to X in the poset topology. It is clear that this may be expressed
as a sentence in the language of second-order arithmetic.

Note that the definition of metrizability requires that each set which is
open in the poset topology must be open in the metric topology, but does not
give a uniform method of converting a code for an open subset in the poset
topology to an open subset in the metric topology. Similarly, no uniform
method for converting open sets in the metric topology to open sets in the
poset topology is given. Lemmas 4.3.9 and 4.3.10 investigate the problem of
establishing such uniformity. We now define a weaker form of metrizability,
which is equivalent to metrizability over ZFC.

Definition 3.2.26. (RCA0) A countably based poset space X is weakly
metrizable if there is a function d : X ×X → [0,∞) such that

1. d is a metric.

2. For every p ∈ P and every x ∈ Np there is an r ∈ Q+ such that
B(x, r) ⊆ Np.

3. For every x ∈ X and every r ∈ Q+ there is a p ∈ P such that x ∈ Np

and Np ⊆ B(x, r).
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Open Problem 3.2.27. Determine the Reverse Mathematics strength of
the proposition that every weakly metrizable countably based MF space is
metrizable. The same question may be asked for countably based UF spaces.

There is a natural definition of a completely weakly metrizable poset
space, which is obtained by replacing metrizability by weak metrizability
in the definition of a completely metrizable poset space. What is the Re-
verse Mathematics strength of the proposition that every weakly completely
metrizable countably based MF space is completely metrizable? What is the
strength of the proposition that every completely weakly metrizable count-
ably based MF space is metrizable? Similar questions may be asked about
countably based UF spaces.

A key property that a method for coding continuous functions must pos-
sess is that RCA0 must be able to evaluate functions into the real numbers.
That is, if f is a continuous function from a space X into the real numbers,
x ∈ X, and z ∈ Q̂ is a strong Cauchy sequence, then the predicates f(x) < z
and f(x) = z must be definable by formulas of low complexity. The next
lemma shows, in RCA0, that the method we have chosen to code continuous
is satisfactory.

Lemma 3.2.28. (RCA0) Let P be a countable poset and let X be UF(P )
or MF(P ). Let Y be the standard poset representation of R or [0,∞), and
let F be a code for a continuous function f : X → Y . There is a Σ0

1 formula
Φ(x, z, F ) with the free variables shown such that if z is a strong Cauchy
sequence of rationals and x ∈ X then Φ(x, z, F ) holds if and only if f(x) < z.
There is a Π0

1 formula Θ(x, z, F ) which holds if and only if f(x) = z.

Proof. Let F , x, and r be as in the statement. Let 〈ni, pi, 〈qi, ri〉〉 be an
enumeration of all of the conditions 〈x, p, 〈q, r〉〉 in F such that x ∈ Np. We
define by induction a sequence 〈si〉 of rationals. To define si, we choose the
least j such that ri < 2−i, and let si = qj . Because F codes a continuous
function from X to Y , such a j will always exist, and the sequence 〈si〉
will be a strong Cauchy sequence converging to f(x). It is well known that
the relation z < z′ is Σ0

1 and the relation z = z′ is Π0
1 for strong Cauchy

sequences z and z′. The lemma follows.
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Chapter 4

Reverse Mathematics
of Poset Spaces

In this chapter, we prove Reverse Mathematics results for poset spaces using
the formalization of poset spaces presented in Chapter 3.

4.1 Filter extension theorems

In this section, we investigate how difficult it is to extend a given linearly
ordered subset or filter in a countable poset P to an element of UF(P )
or MF(P ). We will see that RCA0 can construct unbounded descending
sequences, but RCA0 is not strong enough to construct the upward closures
of arbitrary subsets of P . These results justify our choice of encoding UF(P )
and MF(P ) as descending sequences whose upward closure is the appropriate
kind of filter. If we were to define poset spaces to consist of filters, rather
than descending sequences, then it would be more difficult to work with
poset spaces in RCA0.

We first note that RCA0 proves that if X ⊆ P is linearly ordered then
there is a descending sequence 〈pi〉 ⊆ X which is cofinal in X. Thus, there is
no loss in generality if we consider descending sequences rather than linearly
ordered subsets of P . We say that a descending sequence X extends to a
sequence Y if X ⊆ ucl(Y ).

Lemma 4.1.1. RCA0 proves that every descending sequence extends to
an unbounded descending sequence.

Proof. Let X be a descending sequence on P . If X is unbounded then we are
done; otherwise there is some p ∈ P which is a lower bound for X. We may
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construct an unbounded descending sequence below p; any such sequence
will extend X.

We remark that the proof of Lemma 4.1.1 is nonuniform in a certain
sense; RCA0 would not prove a uniform version of the lemma.

We now show that we may safely work with filters (the upward closures
of descending sequences) in ACA0, but we cannot take the upward closure of
arbitrary sets in RCA0. Thus the definition of UF(P ) as a class of descending
sequences is appropriate for RCA0. When we are working over ACA0, we may
pass freely between filters and the descending sequences that generate them.

Theorem 4.1.2. The following are equivalent over RCA0:

1. ACA0.

2. Every subset of a countable poset has an upward closure.

3. Every linearly ordered subset of a countable poset has an upward clo-
sure.

Proof. (1) implies (2): If X ⊆ P , then ucl(X) = {p ∈ P | ∃q ∈ X[q ¹ p]}.
Thus ucl(X) exists by arithmetical comprehension.

Clearly (2) implies (3). To finish the proof, we show (3) implies (1). We
will use the criterion stated in Theorem 3.1.10. Let f be a function from N
to N; we must show that the range of f exists.

Let P = {2k | k ∈ N}∪ {3j | j ∈ N}. Define a relation ≺ on P by letting
2j ≺ 2i whenever j > i, 3i|3j for all i, j, and 2i ≺ 3j if and only if there is
some k ≤ i such that f(k) = j. The order relation ≺ is ∆0

1 definable, so we
may define ≺ in RCA0. It is immediate that ≺ is a poset order on P .

Let X = {2k | k ∈ N} ⊆ P . By assumption, ucl(X) exists. Now
3j ∈ ucl(X) if and only if there is some k such that f(k) = j; thus the range
of f may be formed by ∆0

1 comprehension relative to ucl(X).

The final theorem in this section will show that maximal filters are much
more difficult to construct than unbounded filters. We first establish several
lemmas.

Lemma 4.1.3. (RCA0) The following proposition implies ACA0. Every
descending sequence in a countable poset P extends to an element of MF(P ).

Proof. Assume that every descending sequence in a countable poset P ex-
tends to an element of MF(P ). Let f : N → N be fixed. We will show that
the range of f exists.
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For each n ∈ N, define a poset Pn by letting

Pn = {2n3j | j ∈ N} ∪ {2n5k | ∀l < k [f(l) 6= n]}.

The order on Pn is defined as follows:

1. 2n3j ¹ 2n3k if and only if j ≥ k.

2. 2n5j ¹ 2n5k if and only if j ≥ k.

3. 2n5j ¹ 2n3k if and only if j ≥ k.

4. 2n3j ¹ 2n5k never.

Note that each Pn and its order relation are uniformly ∆0
1 definable relative

to f , and thus RCA0 is able to form the sequence 〈Pi〉.
For each n ∈ N, the set Fn = {2n3i | i ∈ N} is a maximal filter on Pn if

and only if n in the range of F . Suppose that f(k) = n and k is the least
such number. Then for all l ≥ k we have 2n5l 6∈ Pn, and thus there is no
common extension of 2n3k+1 and 2n50 in Pn. This means there is no filter
extending Fn which contains any element of the form 2n5i; so Fn is maximal.
Now suppose that n is not in the range of f . Then every two elements of
Pn have a common extension, and thus Fn is not a maximal filter on Pn.
We have shown, in fact, that Fn has a unique extension to a maximal filter
(either Fn or Pn) and n is not in the range of f if and only if there is an
element of the for 2n5i in this extension.

We next form the product poset P =
∏̃

n∈NPn and the product filter
F =

∏̃
n∈NFn. It is clear that these sets may be formed in RCA0. Let G

be an extension of F to a maximal filter on P . Now for any n ∈ N, we
see that n is not in the range of f if and only if there is a condition in
G which contains an element of Pn of the form 2n5i. Thus the predicate
n 6∈ range(f) is definable by a Σ0

1 formula relative to G. The relation
n ∈ range(f) is trivially Σ0

1. We may thus form the set {n | ∃k[f(n) = k]}
by ∆0

1 comprehension.

Lemma 4.1.4. (Π1
1-CA0) Every filter on a countable poset extends to a

maximal filter.

Proof. Let X be a descending sequence in a countable poset P = 〈pi〉. Let
M be a countable coded β-model containing P , the order relation on P , and
X. Recall that M = 〈Mi〉 is a sequence of sets. Define the formula

Φ(X, p) ≡ ∃Y [X ⊆ Y ∧ p ∈ Y ∧ Filt(Y, P )],
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where Filt(Y, P ) is the arithmetical formula which says that Y is a filter
on P . Note that Φ is Σ1

1 and is thus absolute to M .
We will construct a sequence of integers ni by induction. Choose n0 such

that Mn0 = X. We will use the induction hypothesis that Mni is always a
filter; this is clearly true for i = 0. Π1

1-CA0 (actually ATR0) proves that the
satisfaction predicate for M exists; the induction will query this predicate
at each stage.

Given ni, ask whether Φ(Mni , pi) holds in M . If it does not, let ni+1 = ni.
If Φ(Mni , pi) does hold, then let ni+1 be the least number such that Mni+1

is a filter extending Mni and containing pi.
We have thus constructed a sequence N = 〈ni〉 which is arithmetically

definable from M and the satisfaction relation on M . Thus Π1
1-CA0 is strong

enough to construct this sequence. From N , we can obtain an increasing
sequence of filters:

Mn0 ⊆ Mn1 ⊆ · · · ⊆ Mni ⊆ · · · .

Let Y =
⋃

i∈NMni ; this set exists by arithmetical comprehension relative to
M and N .

It is straightforward to show that Y is a filter, because each Mni is a
filter. Also, X = Mn0 ⊆ Y . It only remains to show that Y is a maximal
filter. Suppose that Y ′ is a filter with Y ⊆ Y ′. Choose pi ∈ Y ′. Then Y ′

is a filter extending Mni and containing pi, so pi ∈ Mni+1 ⊆ Y . This shows
Y ′ ⊆ Y ; so Y is maximal.

Theorem 4.1.5. The following are equivalent over RCA0:

1. Π1
1-CA0.

2. Every descending sequence in a countable poset P extends to an ele-
ment of MF(P ).

3. Every filter on a countable poset extends to a maximal filter.

Proof. Lemma 4.1.4 shows that Π1
1-CA0 proves (3). It is clear that (2) and

(3) are equivalent over ACA0. Thus Π1
1-CA0 proves (2). Moreover, (2) implies

(3) over RCA0, because (as Lemma 4.1.3 shows) (2) implies ACA0 over RCA0.
We have thus shown that Π1

1-CA0 implies (2) and (2) implies (3) over
RCA0. It remains to show that (3) implies Π1

1-CA0 over RCA0. We will use
the fact that Π1

1-CA0 is equivalent over RCA0 to the proposition “for every
sequence 〈Ti〉 of subtrees of N<N there is a set N such that n ∈ N if and
only if Tn has no path.

54



Begin with a sequence of trees 〈Tn〉. For each tree Tn, form a partial order
〈Pn,≺n〉 consisting of Tn plus a descending sequence {an

i |i ∈ N} disjoint from
Tn. The partial ordering on Pn is defined so that τ ≺n an

i whenever i < |τ |,
σ ≺n τ whenever σ extends τ , and an

j ≺n an
i whenever i < j. Note that

Fn = {an
i : i ∈ N} is a filter on Pn and is maximal if and only if Tn has no

path.
We next form the product partial order P =

∏̃
Pn and the product filter

F =
∏̃

Fn. These sets exist by ∆0
1 comprehension. By assumption, we can

extend F to a maximal filter G. Let K = {k | Tk has a path }. Now Tn has
a path just in case the product condition consisting of {am

1 |m < n} plus the
root of Tn is in G. Hence K can be defined by a ∆0

1 formula relative to G.
So RCA0 proves that K exists.

4.2 Subspaces and product spaces

In Section 2.3.2, we saw that the class of countably based MF spaces is
closed under countable products and under Gδ subspaces. In this section,
we investigate the set existence axioms necessary to obtain these results.
We will see that RCA0 can form products of countably based MF spaces,
but forming Gδ subspaces sometimes requires Π1

1-CA0.

Theorem 4.2.1. RCA0 proves that if 〈Pi | i ∈ N〉 is a sequence of countable
posets then there is a countable poset P such that MF(P ) is homeomorphic
to the topological product

∏
i MF(Pi).

Proof. The proof of Theorem 2.3.15 goes through in RCA0. The product
poset, the projection maps, and the map which sends a sequence of filters
to a single product filter are all definable by ∆0

1 formulas.

A coded Gδ subspace of a poset space X is a sequence 〈Ui | i ∈ N〉 of
open subsets; the sequence represents the Gδ set

⋂
i∈NNUi .

Lemma 4.2.2. Let U be a coded Gδ subspace of MF(P ), where P is a
countable poset. Then Π1

1-CA0 proves that there is a countable poset Q such
that U ∼= MF(Q).

Proof. We indicate how the proof of Theorem 2.3.18 may be formalized in
Π1

1-CA0. We may define

Q = {〈n, p〉 | p ∈ P ∧ ∀i ≤ n [Np ⊆ Ui]
∧ ∃F ⊆ P [LO(F ) ∧ p ∈ F ∧ ∀i ∃q ∈ F (q ∈ Ui)]}.
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The defining formula is Σ1
1; thus Q exists by Π1

1 comprehension. The order
relation on Q is ∆0

1 definable. It is interesting to note that the definition of
Q quantifies over descending sequences which meet each open set Ui rather
than quantifying over maximal filters; this trick enables us to avoid Π1

2

comprehension. We are using the fact that, over Π1
1-CA0, a Gδ set U =

⋂
Ui

contains a point of MF(P ) if and only if there is a linearly ordered F ⊆ P
that meets each open set Ui; see Theorem 4.1.5.

The map F : U → MF(Q), defined by x 7→ {〈n, p〉 ∈ Q
∣∣ x ∈ Np},

is represented by the coded continuous function {〈0, p, 〈n, p〉〉 | 〈n, p〉 ∈ Q},
which may be formed by ∆0

1 comprehension relative to Q. The inverse to
this map is encoded by {〈0, 〈n, p〉, p〉 | 〈n, p〉 ∈ Q}.

The proof that F is a homeomorphism U → MF(Q) follows as in the
proof of Theorem 2.3.18.

Theorem 4.2.3. The following are equivalent over ACA0.

1. Π1
1-CA0.

2. If P is a countable poset then for every Gδ subspace U of MF(P ) there
is a countable poset Q such that U ∼= MF(Q).

3. If Â is a complete separable metric space and U is a Gδ subspace of Â
then there is a complete separable metric space B̂ such that U ∼= B̂.

Proof. Lemma 4.2.2 shows that (1) implies (2). To see that (2) implies (3),
let 〈Â, d〉 be a complete separable metric space and let U =

⋂
Ui be a Gδ

subspace of Â. Working in ACA0, we form the standard poset representation
P bA of Â. We use the code for U to form the corresponding Gδ subspace U ′ of
MF(P bA) such that U ∼= U ′. We then apply (2) to obtain a poset Q such that
U ′ ∼= MF(Q). ACA0 allows us to form a dense subset {Fi} of MF(Q),which
we transform into a dense subset B = {bi} of U in Â. All that remains is to
define a metric d′ on B such that the completion of D under this metric is
homeomorphic to U . We let 〈fi〉 be a sequence of continuous functions from
A to [0,∞) such that for all z ∈ Â and all i ∈ N, fi(z) > 0 if and only if
z ∈ Ui. This sequence may be formed in RCA0; see [Sim99, Lemma II.7.1].
We then let

d′(z, z′) = d(z, z′) +
∑

i∈N
2−i|fi(z)− fi(z′)|−1.

It can be shown that 〈B̂, d′〉 ∼= U .
It remains to show that (3) implies (1). Note that RCA0 proves that each

closed subset C of a complete separable metric space Â is a Gδ subspace.
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For if we let f : Â → [0,∞) be such that f(x) = 0 ⇔ x ∈ C and let
Un = {x | f(x) < 1/n} then C =

⋂
Un.

Brown has shown [Bro90] that Π1
1-CA0 is equivalent over RCA0 to the

statement “every closed subset of a complete separable metric space has a
countable dense subset.” We sketch a proof of Brown’s reversal. Because
RCA0 proves that a Π0

1 subset of N is a closed subset of the discrete metric
space N, “every closed subset of a complete separable metric space has a
countable dense subset” implies ACA0 over RCA0. We work in ACA0 for the
rest of the reversal. Let 〈Ti〉 be a sequence of subtrees of N<N. We will show
that the set of i ∈ N such that Ti has a path exists. We build a tree T be
putting 〈i〉 a σ into T for each i ∈ N and each σ ∈ Ti. Thus T is a sort of
effective disjoint union of the trees 〈Ti〉. It is clear that for each i ∈ N, Ti has
a path if and only if T has a path whose first element is 〈i〉. Moreover, [T ]
is a closed subset of NN. By assumption, [T ] has a countable dense subset.
We may tell whether Ti has a path by asking whether there is a path in the
countable dense subset of [T ] which begin with 〈i〉. This is an arithmetical
question relative to the countable dense subset; thus ACA0 suffices to define
the set of those i ∈ N such that Ti has a path. This completes the reversal
in Brown’s theorem.

We have already shown that (2) implies that every Gδ subset of a com-
plete separable metric space has a countable dense subset. We may apply
Brown’s result, because RCA0 proves that every closed subset of a com-
plete separable metric space is a Gδ subset of the space. The proof is thus
complete.

4.3 Metrization theorems

In Section 4.3.1, we consider Urysohn’s Metrization Theorem. Urysohn’s
Metrization Theorem for MF spaces is provable in Π1

2-CA0, while Urysohn’s
Metrization Theorem for UF spaces is provable in Π1

1-CA0. In Section 4.3.2,
we consider Choquet’s Metrization Theorem, which states that every metriz-
able poset space is completely metrizable. This proposition is provable in
Π1

2-CA0 for MF spaces, and provable in Π1
1-CA0 for UF spaces. In Sec-

tion 4.3.3, we show that the statements “Every countably based regular
MF space is completely metrizable” and “Every countably based MF space
is homeomorphic to a complete separable metric space” are equivalent to
Π1

2-CA0 over Π1
1-CA0 (see Definitions 3.2.24 and 3.2.26). This section also

establishes an important lemma which shows that coanalytic subsets of the
Baire space can be represented as closed subsets of Hausdorff MF spaces.
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A summary of the all the results obtained in Section 4.3 is given in Sec-
tion 4.3.4.

4.3.1 Metrizability

Definition 4.3.1. Urysohn’s Metrization Theorem for UF spaces is the
proposition that every regular countably based UF space is metrizable.
Urysohn’s Metrization Theorem for MF spaces is the proposition that every
regular countably based MF space is metrizable.

Theorem 4.3.2. Urysohn’s Metrization Theorem for UF spaces implies
ACA0 over RCA0.

Proof. Let f be a function from N to N; we will show that the set R =
{n | ∃m [f(m) = n]} exists. We define a poset P exactly as in the proof of
Theorem 4.1.2.

Note that there are only countably many unbounded filters on P . There
is the filter generated by x = {2i | i ∈ N}; the upward closure of this filter
will contain every element 3j for which j is in the range of f . The other
filters are in the set 〈yi | i ∈ N〉, where yi(n) is defined by induction on n as:

yi(0) = 3i,

yi(n + 1) =

{
2n+1 if 2n+1 ≺ yi(n),
yi(n) otherwise.

We note that we may form the sequence 〈yi〉 in RCA0, and that ucl(yi) =
ucl(x) if and only if i is in the range of f .

It is immediate that UF(P ) is a regular Hausdorff space, because the
topology on UF(P ) is discrete. Thus UF(P ) is metrizable, by Urysohn’s
Metrization Theorem.

Let d be any metric inducing the topology on UF(P ). Since x has a
basic neighborhood not containing any yi with i 6∈ R, there is an r ∈ Q+

such that d(x, yi) > r for all i 6∈ R. Conversely, if j ∈ R then d(x, yj) = 0.
Recall that, by Lemma 3.2.28, if r is a real number and x, y ∈ UF(P ) the
the relation d(x, y) = r is Π0

1 and the relation d(x, y) < r is Σ0
1. We have

j ∈ R ⇔ d(x, yj) = 0 ⇔ d(x, yj) < r

and we may thus form the set R by ∆0
1 comprehension.

Corollary 4.3.3. Urysohn’s Metrization Theorem for MF spaces implies
ACA0 over RCA0.
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Proof. The poset in the previous proof satisfies MF(P ) = UF(P ).

Corollary 4.3.4. The following propositions imply ACA0 over RCA0. Ev-
ery regular countably based MF space is weakly metrizable. Every regular
countably based UF space is weakly metrizable.

Proof. The proof of Theorem 4.3.2 only requires that the space be weakly
metrizable, because the only application of the hypothesis of metrizability is
to show that a basic open set in the poset topology contains an open metric
ball around each of its points.

In light of Theorem 4.3.2, there is no loss of generality if we use ACA0 as
a base system, instead of RCA0, when exploring the strength of Urysohn’s
Metrization Theorem.

We now define a property of poset spaces, called strong regularity, which
is equivalent to regularity in ZFC. This definition is inspired by work of
Matthias Schröder [Sch98] in effective topology. Schröder defines the class
of “effectively regular” spaces and shows that every effectively regular space
has a computable metric inducing its topology. Every poset space is an
effective topological space, in the sense of Schröder, but a strongly regular
poset space need not be an effectively regular space.

Definition 4.3.5. (RCA0) Let P be a countable poset and let X be UF(P )
or MF(P ). We say that X is strongly regular if there is a sequence 〈Rp | p ∈
P 〉 of subsets of P such that Np =

⋃
q∈Rp

Nq for each p and cl(Nq) ⊆ Np

whenever q ∈ Rp.

The poset defined in the proof of Theorem 4.3.2 is strongly regular; we
may in fact take Rp = {p}. This proves the following lemma.

Lemma 4.3.6. Each of the following statements implies ACA0 over RCA0.

1. Every strongly regular countably based MF space is metrizable.

2. Every strongly regular countably based UF space is metrizable.

3. Every strongly regular countably based MF space is weakly metrizable.

4. Every strongly regular countably based UF space is weakly metrizable.

Lemma 4.3.7. Π1
2-CA0 proves that every countably based regular MF

space is strongly regular. Π1
1-CA0 proves that every countably based regular

UF space is strongly regular.
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Proof. Suppose that X is a regular poset space. We define Rp to be the set
of all q ¹ p such that cl(Nq) ⊆ Np. More formally, we let

Rp =
{
q ∈ P

∣∣ q ¹ p ∧ ∀x ⊆ P [(x ∈ X ∧ ¬∃r ∈ x [r ⊥ q]) ⇒ p ∈ x]
}

.

Recall that ACA0 proves Nr ∩ Nq = ∅ if and only if r ⊥ q. The formula
defining Rp is Π1

1 for UF spaces (because the predicate x ∈ X is arithmetical)
and Π1

2 for MF spaces (because the predicate x ∈ X is Π1
1). Because X is

regular, Np =
⋃

q∈Rp
Nq for all p ∈ P .

We will show in Section 4.3.3 that Π1
2 comprehension is required to prove

that every regular countably based MF space is strongly regular.

Open Problem 4.3.8. Determine the Reverse Mathematics strength of
the proposition that every regular countably based UF space is strongly
regular.

Recall that the definition of metrizability requires that every open set
in the poset topology is an open set in the metric topology, and vice versa,
but does not require that there is a uniform method for converting a coded
open set in the poset topology to a coded open set in the poset topology,
or vice versa. The next two lemmas show that ACA0 is able to uniformly
convert codes for open sets in the metric topology to codes for open sets in
the poset topology, and ACA0 proves that the ability to uniformly convert
codes in the other direction is equivalent to strong regularity.

Lemma 4.3.9. (ACA0) Suppose that X is a weakly metrizable count-
ably based poset space. There is an arithmetically defined functional Φ
such that for every S = {〈xi, ri〉} ⊆ X × Q+ we have Φ(S) ⊆ P and⋃
〈xi,ri〉∈S B(xi, ri) =

⋃
p∈Φ(S) Np.

Proof. Let d be a metric on X, and let A be a countable dense subset of
X. For p ∈ P , x ∈ X, and r ∈ Q+, we write p ¿ 〈x, r〉 if and only if there
is an a ∈ A ∩ Np and an s ∈ Q+ such that d(a, b) + d(a, x) + s < r for
all b ∈ A ∩ Np. The relation ¿, viewed as a three-place predicate of p, x,
and r, is uniformly arithmetically definable relative to d and A. For each
S = {〈xi, ri〉} ⊆ X ×Q+ let

Φ(S) = {p | ∃i [p ¿ 〈xi, ri〉]}.

It is clear that Φ is uniformly arithmetically definable.
It remains to show that

⋃
i∈NB(xi, ri) =

⋃
p∈Φ(S) Np for each S =

{〈xi, ri〉} ⊆ X × Q+. First, suppose that p ∈ Φ(S) and y ∈ Np. Then
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for some i ∈ N we have p ¿ 〈xi, ri〉. From the definition of ¿ we see that
d(y, xi) < r, which means y ∈ B(xi, ri). For the converse, suppose that
y ∈ B(xi, ri) for some i ∈ N. Choose a ∈ A and t ∈ Q+ such that d(a, y) < t
and d(xi, a) + 2t < ri. By the definition of weak metrizability, there is a
p ∈ P such that y ∈ Np and Np ⊆ B(a, t). We will show that p ¿ 〈xi, ri〉.
Choose a′ ∈ A ∩Np. Then d(xi, a

′) < ri so a′ ∈ B(xi, ri). For b ∈ A ∩Np,
d(a′, b) < t, whence d(xi, a

′)+d(a′, b)+ t < ri. We conclude p ¿ 〈xi, ri〉.
Lemma 4.3.10. (ACA0) Suppose that X is a weakly metrizable countably
based poset space. The following are equivalent.

1. X is strongly regular.

2. There is an arithmetically definable functional Ψ such that for each
U ⊆ P , Ψ(U) ⊆ X ×Q+ and

⋃
p∈U Np =

⋃
〈x,r〉∈Φ(U) B(x, r).

Proof. Let d be a metric on X, and let A be a countable dense subset of X.
First, suppose that there is a sequence 〈Rp | p ∈ P 〉 witnessing the strong

regularity of X. We define a relation ¿ on (X×Q)×P by letting 〈x, r〉 ¿ p
if and only if there is a q ∈ Rp such that B(x, r) ∩ A ⊆ Nq. It is clear
that 〈x, r〉 ¿ p implies B(x, r) ⊆ Np, because cl(B(x, r)) ⊆ cl(Nq) ⊆ Rp.
Moreover, for every x ∈ Np there is a q ∈ Rp with x ∈ Nq. Thus there is
a y ∈ X and an r ∈ Q+ such that x ∈ B(y, r) ⊆ Nq. Choose a ∈ A and
s ∈ Q+ such that d(y, a) + s < r and d(x, a) < s. Then x ∈ B(a, s) ⊆
B(y, r). Moreover, B(y, r) ∩ A ⊆ Nq ∩ A, which implies 〈a, r〉 ¿ p. Thus
Np =

⋃{B(a, s) | 〈a, s〉 ¿ p} for every p ∈ P . For each U ⊆ P we let

Ψ(U) = {〈a, r〉 | ∃p ∈ U [〈a, r〉 ¿ p]}.

It is clear that Ψ is uniformly arithmetically definable, and it follows from
the discussion above that

⋃
p∈U Np =

⋃
〈x,r〉∈Ψ(U) B(x, r).

Next, suppose that Ψ is any arithmetically definable functional such that⋃
p∈U Np =

⋃
〈x,r〉∈Ψ(U) B(x, r) for each U ⊆ P . We wish to show that X is

strongly regular. For each p ∈ P , let Vp = Ψ({p}). Thus Vp is a sequence
of elements of X ×Q+. Let Wp be the set of all pairs 〈a, s〉 ∈ X ×Q+ such
that there exists 〈x, r〉 ∈ Vp with d(a, x) + s < r. Note that if 〈a, s〉 ∈ Tp

then cl(B(a, s)) ⊆ Np, and every x ∈ Np is in B(a, s) for some 〈a, s〉 ∈
Wp. Furthermore, we may uniformly define Wp from p with an arithmetical
formula. Let Φ be the functional constructed in Lemma 4.3.9. For each
p ∈ P let

Rp = {q ∈ P | ∃〈a, s〉 ∈ Wp [q ∈ Φ({〈a, s〉}) ]}.
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The set Rp is uniformly arithmetically definable from p, and we may thus
form the sequence 〈Rp〉 in ACA0. It follows from the construction that 〈Rp〉
is a witness to the strong regularity of X.

We will show, in ACA+
0 , that if a countably based poset space is strongly

regular then it is metrizable. The converse has been stated as Problem 4.3.8.
Our proof will roughly follow the traditional proof of Urysohn’s Metrization
Theorem that a regular second-countable space is metrizable, which we now
outline. The first step is to show that every second-countable regular space
X is normal. The second step is to use the normality of X and a depen-
dent choice principle to produce a family of continuous functions from X to
[0,∞). The final step is to form a metric on X as a weighted sum of these
continuous functions. The main technical difficulty in the formalization of
this proof is the strong choice principles. In order to formalize the proof of
Urysohn’s Metrization Theorem in weak subsystems of second-order arith-
metic, we combine the first two steps of the classical proof into the following
lemma, which establishes a weak form of normality and encapsulates a form
of dependent choice.

Lemma 4.3.11. (ACA+
0 ) If X is a strongly regular countably based poset

space then there is a sequence 〈Ui〉 of open sets such that:

1. There is a function i : P → N such that Ui(p) = {p} for each p ∈ P .

2. There is a function i⊥ : P → N such that Ui⊥(p) = {r | r ⊥ p} for each
p ∈ P .

3. There are functions ν1, ν2 : N→ N such that for all i, j ∈ N if cl(Ui) ∩
cl(Uj) = ∅ then cl(Ui) ⊆ Uν1(i,j), cl(Uj) ⊆ Uν2(i,j), and Uν1(i,j) ∩
Uν2(i,j) = ∅.

Proof. Let 〈Rp〉 be a sequence witnessing the strong regularity of X. For
any U ⊆ P we define the set U⊥ = {q ∈ P | ∀p ∈ U [q ⊥ p]}. Note that U⊥

may be defined by a Π0
1 formula. For any U ⊆ P , we may write X as the

disjoint union of cl(U) and U⊥.
Note that there is a function e(U, n) such that for every open set U we

have {e(U, n) | n ∈ N} = {q | ∃p ∈ U(q ∈ Rp)}. The function e is definable
by an arithmetical formula with free variables U and n and a parameter for
〈Rp〉.

We define uniformly for all U, V ⊆ P a sequence 〈Gn(U, V ) | n ∈ N〉 of
open sets:

Gn(U, V ) = {p ∈ P | p ¹ e(U, n) ∧ ∀i ≤ n (p ⊥ e(V, i))}.
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Note that Gn(U, V ) is uniformly arithmetically definable with parameters
for P , ¹, and 〈Rp〉. It follows from the definition of G that for any n, m ∈ N
and any U, V ⊆ P the sets Gn(U, V ) and Gm(V, U) are disjoint.

We define a pair of functionals ν1, ν2 : P (N) → P (N) such that cl(U) ⊆
ν1(U, V ), cl(V ) ⊆ ν2(U, V ), and ν1(U, V )∩ ν2(U, V ) = ∅ whenever U and V
are open subsets of X such that cl(U) ∩ cl(V ) = ∅. Let

ν1(U, V ) = {p | ∃n[p ∈ Gn(V ⊥, U⊥)]},
ν2(U, V ) = {p | ∃n[p ∈ Gn(U⊥, V ⊥)]},

and note that these sets are defined uniformly for all U, V by arithmetical
formulas with the same parameters as G.

We claim that this definition of ν1 and ν2 satisfies the requirement stated
above. Suppose cl(U) ∩ cl(V ) = ∅. It is clear that ν1(U, V ) and ν2(U, V )
must be disjoint. Now suppose that x ∈ cl(U); then x ∈ V ⊥ and there is an
n such that x ∈ Ne(V ⊥,n). Moreover, x 6∈ U⊥, which implies that for all m,
x 6∈ cl(e(U⊥,m)). There is thus an r ∈ P such that x ∈ Nr and r ⊥ e(U⊥, i)
for all i ≤ m. Let p be a common extension of r and e(V ⊥, n) such that
x ∈ Np; then p ∈ Gn(V ⊥, U⊥), whence x ∈ Gn(V ⊥, U⊥) ⊆ ν1(U, V ). This
shows cl(U) ⊆ ν1(U, V ). Similarly, V ⊆ ν2(U, V ).

To complete the lemma, we must iterate the functions ν1 and ν2. It can
be seen that this iteration may be carried out in ACA+

0 . The key fact is that
ν1 and ν2 are uniformly arithmetically definable.

The next step in our proof of Urysohn’s Metrization Theorem is to con-
struct a sequence of continuous functions from X to [0,∞).

Lemma 4.3.12. (ACA+
0 ) Let X be a strongly regular countably based

poset space. There is a sequence 〈fp,q | p ∈ P, q ∈ Rp〉 of continuous
functions from P to [0,∞) such that for all p ∈ P and q ∈ Rp we have
fp,q ¹ Nq = 0 and fp,q ¹ (X \Np) = 1.

Proof. Let 〈Ui〉 be a sequence of open sets as in Lemma 4.3.11 (which uses
ACA+

0 ), with associated functions i, i⊥, ν1, and ν2. We show how to con-
struct fp,q in ACA0 for a fixed p ∈ P and q ∈ Rp. The description will be uni-
form in p and q, allowing us to construct the sequence 〈fp,q | p ∈ P, q ∈ Rp〉
in ACA0.

Let D denote the set of dyadic rationals in [0, 1]:

D = {a/2n | 0 ≤ a ≤ 2n, n ≥ 0}.
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Each element q ∈ D has a unique reduced form a/2n in which n is minimal.
The length of q is lh(q) = n, the exponent of 2 in the reduced form of q.

We begin our construction of f = fp,q by constructing a map g from D
to N. The map is constructed by induction on length. We let g(0) = i(q)
and g(1) = i⊥(p). This defines g for all k ∈ D of length 1. We will use
the induction hypothesis that if k < k′ and g is defined on k and k′ then
cl(Ug(k)) ∩ cl(Ug(k′)) = ∅. This hypothesis holds at the base step because
q ∈ Rp.

Suppose g is defined for all k of length < n and let l = a/2n have length
n. We define g(l) using the function ν1 from Lemma 4.3.11:

g(l) = ν1(g((a− 1)/2n), g((a + 1)/2n)).

The definition of g ensures that the induction hypothesis is satisfied.
For each k < 1 ∈ D, let Vk = Ug(k) and let V1 = X. By induction, we

know that cl(Vk) ⊆ Vk′ whenever k < k′. We will construct a code for the
function f : P → R+ such that

f(x) = inf{k ∈ D | x ∈ Vk}.

Note that f(x) < k if and only if there is some k′ < k with x ∈ Vk.
For each p ∈ P define

m(p) = inf{k ∈ D | Np ∩ Vk 6= 0},
M(p) = sup{k ∈ D | Np ∩ Vk 6= 0}.

Note that Np ∩ Vk is open, and we may thus define Np ∩ Vk = ∅ with an
arithmetical formula.

Claim: If x = 〈pi〉 ∈ X then limi→∞m(pi) = limi→∞M(pi) = f(x).
It is clear that m(pi) is nondecreasing. If m = limm(pi) < f(x) then we
may choose k ∈ D such that m < k < f(x). Now x cannot be in cl(Vk),
since k < f(x); but if m < k then every neighborhood of x has nonempty
intersection with Vk and thus x ∈ cl(Vk). We have reached a contradiction
by assuming m < f(x). Similarly, if f(x) < M then there is some k ∈ D
with f(x) < k < M . Thus f(x) < k and x ∈ cl(X \ Vk), which is impossible
because of the definition of ν1 and ν2. This finishes the proof of the claim.

We build a code for a continuous function by associating each p ∈ P with
every open ball of the form B(q, r) such that q−r < m(p) and q+r > M(p).
It is not difficult to show in ACA0 that this is a code for a continuous function
and that the function encoded is f .
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Theorem 4.3.13. (ACA+
0 ) Every strongly regular countably based MF

space is metrizable.

Proof. Let X be a countably based poset space, let 〈Rp〉 witness the strong
regularity of X, and let A be a countable dense subset of X.

The proof now follows the classical proof of Urysohn’s Metrization The-
orem. Let 〈fi〉 be the sequence of functions constructed in Lemma 4.3.12.
We define a coded continuous function d : X ×X → [0,∞) such that

d(x, y) =
∑

i∈N
2−i|fi(x)− fi(y)|.

To construct the code for d, we use the fact that the terms in the series
converge quickly to zero.

Claim: X is weakly metrizable with metric d. First, suppose that x ∈
Np. Choose q ∈ Rp with x ∈ Nq. Choose i such that fi ¹ Nq = 0 and
f ¹ (X \Np) = 1. Let r = 2−(i+1). Then B(x, r) ⊆ Np, because of the way
d was defined.

Conversely, fix x ∈ X and r ∈ Q+. Let n be large enough that r >∑∞
i=n 2−i. There are only finitely many q ∈ P such that x ∈ Nq and there

is a p ∈ P and an i ≤ n such that fi is the function that separates Nq from
Np. Choose r ∈ P such that x ∈ Nr and Nr is contained in Nq for all such
q. Then Nr ⊆ B(x, r). This completes the proof of the claim.

Because X is weakly metrizable and strongly regular, we may apply
Lemmas 4.3.9 and 4.3.10 to show in ACA0 that every open set in the metric
topology is open in the poset topology every open set in the poset topology
is open in the metric topology. Thus X is metrizable with metric d.

Corollary 4.3.14. (ACA+
0 ) Every strongly regular countably based UF

space is metrizable.

Proof. The proof of Theorem 4.3.13 goes through in ACA+
0 when MF spaces

are replaced by UF spaces.

Open Problem 4.3.15. Determine the Reverse Mathematics strengths
of the following propositions.

1. Every strongly regular countably based MF space is metrizable.

2. Every strongly regular countably based MF space is weakly metrizable.

The strengths of the corresponding theorems for UF spaces are also un-
known.
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Corollary 4.3.16. Urysohn’s Metrization Theorem for countably based
UF spaces is provable in Π1

1-CA0. Urysohn’s Metrization Theorem for count-
ably based MF spaces is provable in Π1

2-CA0.

Proof. The proof follows from Lemma 4.3.7, Theorem 4.3.13, and Corol-
lary 4.3.14.

Open Problem 4.3.17. Recall that a topological space is normal if each
pair of disjoint closed sets is contained in a pair of disjoint open sets. This
definition, when restricted to countably based poset spaces, may be phrased
as a sentence in the language of second-order arithmetic. It is well known
that ZFC proves that every regular second-countable space is normal. What
is the reverse mathematics strength of the proposition that every regular
countably based MF space is normal? The same question may be asked for
UF spaces.

4.3.2 Complete metrizability

Because poset spaces have the strong Choquet property (Lemma 2.3.29),
every metrizable poset space is completely metrizable. In this section, we
will show in Π1

2-CA0 that every regular countably based MF space is com-
pletely metrizable (see Definition 3.2.26). This will allow us to show, in
Π1

2-CA0, that every regular countably based MF space is homeomorphic to
a complete separable metric space (Definition 3.2.24). In Section 4.3.3, we
show that each of these statements implies Π1

2-CA0 over Π1
1-CA0. We also

show in this section that the statements “Every regular countably based
UF space is completely metrizable” and “Every regular countably based UF
space is homeomorphic to a complete separable metric space” are provable
in Π1

1-CA0. We do not know the Reverse Mathematics strength of these
statements for UF spaces.

Lemma 4.3.18. (RCA0) If 〈Ui | i ∈ N〉 is a sequence of open sets in a
complete separable metric space 〈Â, d〉 then there is a complete metric d′

defined on
⋂

Ui which gives the same topology to
⋂

Ui as d. If D is countable
dense subset of

⋂
Ui then

⋂
Ui is canonically homeomorphic to the complete

separable metric space 〈D̂, d′〉.
Proof. Let 〈fi〉 be a sequence of continuous function from Â to [0,∞) such
that fi(x) > 0 if and only if x ∈ Ui for each i and every x ∈ Â. The existence
of such a sequence is provable in RCA0; see [Sim99, Lemma II.7.1].
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Define a new metric d′ on
⋂

Ui by the rule

d′(x, y) = d(x, y) +
∑

i∈N
min

{
2−i, |fi(x)− fi(y)|−1

}
.

A code for the metric d′ may be defined from d and 〈fi〉 in RCA0.
It can be shown that the topology on

⋂
Ui induced by d′ is the same

as that induced by d, and that d′ is a complete metric on
⋂

Ui; see [Kec95,
Theorem 3.11].

Lemma 4.3.19. (ACA0) Let P be a countable poset and let X be UF(P )
or MF(P ). Suppose that X is metrizable. There is a complete separable
metric space Â and a continuous open bijection h between X and a dense
subset of Â. Moreover, h is an isometry.

Proof. Assume that d is a metric on X. Let A be a countable dense subset
of X. For each p ∈ P we define diam(p) ∈ [0,∞) as

diam(p) = sup{d(a, a′) | a, a′ ∈ Np ∩A}.
This definition is arithmetical, and thus valid in ACA0.

We will build a code for a continuous function h from X to the standard
poset representation Q of the complete separable metric space 〈Â, d〉. To do
this, we let H be the set of all 〈p, 〈a, r〉〉 ∈ P × (A × Q) such that a ∈ Np

and diam(p) < r. Let h be the continuous function encoded by H.
Let x be any filter in X. We must show that h(x) gives the correct filter

in Q. Let 〈ani〉 be a Cauchy sequence in A which converges to x. For each
m ∈ N choose pm ∈ P such that x ∈ Np and diam(p) < 2−(m+1). Choose
i ∈ N large enough that ani ∈ Np. Then 〈p, 〈ani , 2

−m〉〉 ∈ F . Thus there are
open balls of arbitrarily small radius associated with x.

We need to show that H[x] generates a filter. Suppose that 〈p, 〈a,r〉〉 and
〈q, 〈a′, s〉〉 are in F [x]. Then d(x, a) < r and d(x, a′) < s. Choose ε ∈ Q+

such that d(x, a)+ε < r and d(x, a′)+ε < s. Choose u ∈ P such that x ∈ Nu

and Nu ⊆ B(x, ε/8). Note that diam(u) ≤ ε/4. Choose a′′ ∈ A ∩ Nu.
Then 〈u, 〈a′′, ε/4〉〉 ∈ F . Now d(a, a′′) + ε/4 < d(a, x) + d(x, a) + ε/4 <
d(a, x) + ε/2 < r, so B(a′′, ε/4) is formally included in B(a, r). Similarly
B(a′′, ε/4) is formally included in B(a′, s). This shows that every pair of
elements in h(x) have a common extension in h(x).

We have thus shown that h(x) is a point in Q for all x ∈ MF(P ). It is
clear that h is an isometry, because the restriction of h to A is an isometry.
Because X is metrizable with metric d, every open subset of X in the poset
topology is open in the metric topology. Because h is an isometry, we can
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easily convert a code for an open subset of X in the metric topology to a
code for the corresponding open subset of h(X) ⊆ Â.

Note that Lemma 4.3.19 does not show that the inverse of h exists.

Open Problem 4.3.20. Suppose that X is a metrizable countably based
MF space. What is the Reverse Mathematics strength of the proposition
that X is homeomorphic to a dense subset of a complete separable metric
space? What is the strength if we require h to be an isometry? The same
questions may be asked for metrizable UF spaces.

The full hypothesis of metrizability is used in the proof of Lemma 4.3.19;
we do not know if this hypothesis could be replaced by weak metrizability
in ACA0. The following corollary shows that, in ACA0, we may replace
metrizability by weak metrizability if we also weaken the conclusion to say
that h is weakly open.

Corollary 4.3.21. (ACA0) Let P be a countable poset and let X be UF(P )
or MF(P ). Suppose that X is weakly metrizable. There is a complete
separable metric space Â and a continuous weakly open bijection h between
X and a dense subset of Â. Moreover, h is an isometry.

Proof. The proof is analogous to that of Lemma 4.3.19.

Open Problem 4.3.22. Determine the Reverse Mathematics strength of
the following statement. If X is a weakly metrizable countably based MF
space then there is a continuous open bijection h from X to a dense subset
of a complete separable metric space. What if we also require h to be an
isometry? The same questions may be asked for weakly metrizable UF
spaces.

Lemma 4.3.23. (Π1
2-CA0) Suppose that P is a countable poset and X =

MF(P ) is metrizable. There is an embedding f of X as a dense subset of
a complete separable metric space Â and a sequence 〈Ui〉 of open sets in Â
such that f(X) =

⋂
Ui.

Proof. The proof is inspired by the proof of [Kec95, Theorem 8.17(ii)]. That
proof, however, uses the languages of games while proof here does not. Let
d be a metric on X compatible with the original topology and let A = 〈ai〉
be a dense subset of X. By Lemma 4.3.19, there is an isometric embedding
f of X into 〈Â, d〉.
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We may use Π1
2 comprehension to form the set {〈a, r, p〉 | B(a, r) ⊆ Np}

and the set {〈a, r, p〉 | Np ⊆ B(a, r)}. Here, B(a, r) denotes a subset of X.
We will use these sets as oracles for the rest of the proof.

We now construct a countable tree T consisting of certain finite sequences
of the form 〈W0, q0,W1, q1, . . . ,Wn−1, qn〉 or 〈W0, q0,W1, q1, . . . , qn,Wn〉 such
that each Wi is a sequence of balls B(a, r), with a ∈ A and r ∈ Q+; qi ∈ P
and diam(qi) < 2−i for i ≤ n; and NW0 ⊇ Nq1 ⊇ NW1 ⊇ Nq2 ⊇ · · · and
q0 º q1 º q2 º · · · . We will ensure that for each n the set all W which occur
in the final position of a sequence of length 2n + 1 in T forms a point-finite
covering of X.

The tree is constructed by arithmetical transfinite recursion along N. At
stage n, we put sequences of length n + 1 into the tree. At stage 0, form
a point-finite covering of X; for each W in this covering put the sequence
〈W 〉 into T .

At stage 2n + 1, begin by forming the set S of pairs 〈σ,B〉 such that
σ = 〈W0, q1,W1, . . . , Wn, qn〉 is in T and B ⊆ Nqn . We may make an
enumeration {Bσ,n} such that 〈σ,B〉 ∈ S if and only if there is an n such
that B = Bσ,n. Form a point-finite refinement of the countable collection of
open sets {Bσ,n}. The refinement replaces each ball Bσ,n with an open set
Wσ,n. Put into T every sequence of the form σ a 〈Wσ,n〉.

At stage 2n + 2, for each sequence 〈W0, q1, W1, . . . , Wn, qn,Wn+1〉 ∈ T
put into T every sequence 〈W0, q1, W1, . . . , Wn, qn,Wn+1, q〉 such that q ¹ qn

and there exists a ball B ∈ Wn+1 such that Nq ⊆ B.
This completes the construction of T . We use T to construct a sequence

〈Ui〉 of open sets. For each n, Un is the union of all open sets W which occur
as the final open set in a sequence of length 2n + 1 in T . Each Un may be
written as the union of a set {Bn

i | i ∈ N} of basic open balls. A simple
induction shows that for all n ∈ N the set Un covers X; the key fact is that
if x ∈ B and x ∈ Np then there are p′ with arbitrarily small diameter such
that x ∈ Np′ ⊆ B and p′ ¹ p.

For any basic open ball B = B(a, r) in X we let B̂ denote the ball B(a, r)
in Â; thus f(x) ∈ B̂ ⇔ x ∈ f(B) for each x ∈ X and each basic open ball B.
For each n we form an open subset of Ûn of Â by letting Ûn = {B̂n

i | i ∈ N}.
We show that f(X) =

⋂
n∈N Ûn in Â. Because each Un covers X, each

Ûn covers f(X); this shows that f(X) ⊆ ⋂
n∈N Ûn. Suppose that ẑ is a

strong Cauchy sequence in
⋂

n∈N Ûn. Consider the set of all sequences in
T of the form 〈W0, . . . , Wn+1〉 such that ẑ ∈ Ŵn+1. These sequences form
a subtree Tẑ of T , because if ẑ ∈ Ŵn+1 then ẑ ∈ Ŵn for any sequence
〈W0, . . . ,Wn, qn,Wn+1〉 ∈ T . The tree Tẑ is infinite, because ẑ ∈ Un for
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all n ∈ N. Tẑ is also finitely branching, because the collection of all W
appearing at level 2n of T is a point-finite collection of open sets. We apply
König’s Lemma to obtain a path 〈W0, qo,W1, q1, · · · 〉 through Tẑ; it is clear
that ẑ ∈ ⋂

Ŵi. Moreover, at most one point is in the intersection, because
diam(qi) < 2−i for all i ∈ N. The descending sequence 〈qi〉 extends to a
maximal filter x ∈ X, and this maximal filter is clearly in

⋂
Wi. Thus

f(x) = ẑ. We have now shown
⋂

n∈N Ûn ⊆ f(X).

We obtain the corresponding result for UF spaces as a corollary.

Corollary 4.3.24. (Π1
1-CA0) Suppose that P is a countable poset and

X = UF(P ) is metrizable. There is an embedding f of X as a dense subset
of a complete separable metric space Â and a sequence 〈Ui〉 of open sets in
Â such that f(X) =

⋂
Ui.

Proof. The proof parallels that of Lemma 4.3.23. The key difference is that,
when X is a UF space, the predicates Np ⊆ B(a, r) and B(a, r) ⊆ Np are
definable by Π1

1 formulas.

Theorem 4.3.25. (Π1
2-CA0) Every metrizable countably based MF space

is completely metrizable and homeomorphic to a complete separable metric
space.

Proof. Let X be a metrizable countably based MF space with metric d. Let
A be a dense subset of X. By Lemma 4.3.19, we may embed X into the
complete separable metric space 〈Â, d〉. We use Lemma 4.3.23 to construct
a sequence 〈Ui〉 of open sets of Â such that X =

⋂
Ui. Then Lemma 4.3.18

implies there is a metric d′ on A such that X = 〈Â, d′〉. As in the proof of
Theorem 4.3.13, Π1

2-CA0 proves that every open set in the poset topology is
an open set in the metric topology, and vice versa. Thus X is completely
metrizable.

We show that X is homeomorphic to the standard poset representation
of Â by constructing codes for both the forward map h : X → Â and its
inverse map.

The code for h : MF(P ) → Â includes each condition 〈p, a, r〉 such that
a ∈ Np and diam(Np) < r. If 〈p, a, r〉 is such a condition then Np ⊆ B(a, r).
For otherwise there is a sequence of points 〈ai〉 in Np which converges to
a point x ∈ Np \ B(a, r). This implies d(a, x) = lim d(a, ai) ≥ r, and thus
diam(Np) ≥ r, a contradiction.

The code for the inverse map h−1 includes each condition 〈a, r, p〉 such
that B(a, r) ⊆ Np. The set of such conditions is definable by a Π1

2 formula, so
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we may form the set of these conditions in Π1
2-CA0. We must show that h−1

defines a continuous bijection from 〈Â, d′〉 to X. Let z be a Cauchy sequence
on 〈Â, d′〉. We know that there is a unique x such that f(x) = z. Note that
for each p such that x ∈ Np there is a ball B(a, r) such that x ∈ B(a, r) and
B(a, r) ⊆ Np. Because z ∈ B(a, r), we have p ∈ h−1(z). This shows that
x ⊆ h−1(z). Because x ∈ MF(P ), we have shown x = h−1(Z). Thus h−1 is
well defined.

Corollary 4.3.26. (Π1
2-CA0) Every regular countably based MF space is

completely metrizable and homeomorphic to a complete separable metric
space.

Proof. Let X be a regular countably based MF space. Corollary 4.3.16
shows that X is metrizable. By Theorem 4.3.25, X is completely metrizable
and homeomorphic to a complete separable metric space.

Corollary 4.3.27. (Π1
1-CA0) Every metrizable countably based UF space

is completely metrizable and homeomorphic to a complete separable metric
space.

Proof. The proof is parallel to that of Theorem 4.3.27. The necessary oracles
are definable by Π1

1 formulas when we are working with UF spaces.

Corollary 4.3.28. (Π1
1-CA0) Every regular countably based UF space is

homeomorphic to a complete separable metric space.

Proof. The proof is parallel to Corollary 4.3.26.

We now show how to prove Lemma 4.3.23 in Π1
1-CA0 with the added

assumption that the space is strongly regular. We obtain the corresponding
result for UF spaces in ACA+

0 . These results allow us to reprove Corollaries
4.3.26 and 4.3.27, with the added assumption of strong regularity, in Π1

1-CA0

and ACA+
0 , respectively.

Lemma 4.3.29. (Π1
1-CA0) Suppose that X is a metrizable strongly regular

countably based MF space. There is an embedding of X as a dense subset
of a complete separable metric space Â and a sequence 〈Ui〉 of open sets in
Â such that f(X) =

⋂
Ui.

Proof. The general outline of the proof is the same as for Lemma 4.3.23.
Let d be a metric on X compatible with the original topology, let A = 〈ai〉
be a dense subset of X, and let f be an embedding of X to Â. Let 〈pi〉 be
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an enumeration of P . Let 〈Rp | p ∈ P 〉 be a sequence witnessing the strong
regularity of X.

As in the proof of Lemma 4.3.23, we construct a countable tree T of
sequences of the form 〈W0, q0,W1, q1, . . . , Wn−1, qn〉 or 〈W0, q0, . . . , qn,Wn〉
such that each Wi is a sequence of balls B(a, r), with a ∈ A and r ∈ Q+ and
qi ∈ P for i ≤ n. We will make the following requirements on the sequences
in T .

1. Each Wi contains a basic open ball B such that Nqi+1 ⊆ B.

2. For each qi there is a q ∈ Rqi such that NWi+1 ∩A ⊆ Nq ∩A.

3. qi+1 ¹ qi for each i ∈ N.

4. diam qi < 2−i for each i ∈ N.

It can be seen that the collection of sequences satisfying these requirements is
definable by an arithmetical formula. We note that requirement (2) implies
that NWi+1 ⊆ Nqi for each i ∈ N.

We construct a tree by transfinite recursion along N as in the proof of
Lemma 4.3.23. At stage 0, form a point-finite covering of X; for each W in
this covering put the sequence 〈W 〉 into T .

At stage 2n + 1, begin by forming the set S of pairs 〈σ,B〉 such that σ
is in T , |σ| = n, and σ a 〈{B}〉 satisfies the requirements (only requirement
(2) is an issue). Define a sequence {Bσ,n} such that 〈σ,B〉 ∈ S if and only
if there is an n such that B = Bσ,n. Form a point-finite refinement {Wσ,n}
of {Bσ,n} and put into T every sequence of the form σ a 〈Wσ,n〉.

At stage 2n + 2, for each sequence 〈W0, q1, W1, . . . , Wn, qn,Wn+1〉 ∈ T
put into T every sequence 〈W0, q1,W1, . . . , Wn, qn,Wn+1, q〉 which satisfies
the requirements.

This completes the construction of T ; note that T may be constructed in
ACA+

0 because the stages of the construction are uniformly given by arith-
metic functionals. Construct a sequence 〈Ui〉 of open sets by letting Un be
the union of all open sets W which occur as the final open set in a sequence
of length 2n + 1 in T , and find an enumeration Un = {Bn

i | i ∈ N}.
We say a sequence σ ∈ T meets a point x ∈ X if x is in the neighborhood

determined by the final element of the sequence σ; if the length of σ is odd
this will be a union of metric balls, while if the length is even this will be
a basic neighborhood in the poset topology. We prove that for every x and
every m there is a sequence of length m in T which meets x. Let x ∈ X be
fixed; we prove the result by induction on m. The case for m = 1 follows
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immediately from the construction. The rest of the induction breaks into
two cases: m + 1 even and m + 1 odd.

Suppose that the induction is valid through m and m+1 = 2n+2 is even.
Then there is a sequence 〈W0, q1,W1, . . . ,Wn, qn〉 of length m in T which
meets x; this means x ∈ Nqn . Choose q ∈ Rqn such that x ∈ Nq. Because
the metric topology is compatible with the poset topology, there must be a
basic open ball B such that x ∈ B and B ⊆ Nq. Thus B∩A ⊆ Nq∩A; so the
sequence 〈W0, q1,W1, . . . ,Wn, qn, {B}〉 satisfies the requirements. Because
there is at least one sequence of length m + 1 which meets x before the
point-finite refinement is made, there will be a sequence of length m + 1
which meets x after the refinement is made.

Now suppose that the induction is valid though m and m+1 = 2n+1 is
odd. By induction, there is a sequence 〈W0, q1,W1, . . . , qn−1, Wn〉 of length
m in T which meets x. Choose a basic open ball B in Wn such that x ∈ B.
We can then choose r ∈ P such that x ∈ Nr, Nr ⊆ B, diam(r) < 2−n,
and r ¹ qn−1. The sequence 〈W0, q1,W1, . . . , qn−1, Wn, r〉 satisfies all of the
requirements; this is a sequence of length m + 1 in T which meets x.

Thus we have shown that for every x ∈ X and every m ∈ N there is a
sequence of length m in T which meets x. In particular, this implies that
if we define Un to be the union of all open sets W which occur as the final
open set in a sequence of length 2n + 1 in T then Un will cover X for each
n ∈ N.

The rest of the proof duplicates Lemma 4.3.23; once the open sets Un

have been constructed, the rest of the argument goes through in Π1
1-CA0.

Lemma 4.3.30. (ACA+
0 ) Suppose that X is a metrizable strongly regular

countably based UF space. There is an embedding of X as a dense subset
of a complete separable metric space Â and a sequence 〈Ui〉 of open sets in
Â such that f(X) =

⋂
Ui.

Proof. By retracing the proof of Lemma 4.3.29, we see that the only remain-
ing use of Π1

1 comprehension is to show that a descending sequence extends
to a maximal filter. RCA0 proves that every filter extends to an unbounded
filter. The rest of the proof of Lemma 4.3.29 uses only ACA+

0 .

Lemma 4.3.31. (Π1
1-CA0) Every metrizable strongly regular countably

based MF space is completely metrizable and homeomorphic to a complete
separable metric space.

Proof. Let X be a metrizable MF space,with metric d, and let 〈Rp〉 witness
the strong regularity of X. Let A be a countable dense subset of X. Apply
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Lemma 4.3.29 and Lemma 4.3.18 to obtain a code for a complete metric d′

on X.
To complete the proof that X is completely metrizable, we must to show

that each open set in the poset topology is open in the metric topology
induced by d′, and that each open set in the metric topology induced by
d′ is open in the poset topology. We know that this holds for the metric
topology induced by d, and we know that d and d′ are compatible metrics by
Lemma 4.3.18. The proof resembles the proofs of Lemmas 4.3.9 and 4.3.10
but is not quite the same. In those lemmas, we assumed that X was metriz-
able. Here, we are trying to prove that X is metrizable with metric d′

assuming it is metrizable with metric d.
Let U ⊆ P be fixed. We use arithmetical comprehension to define

S(U) = {〈a, r〉 ∈ A×Q+ | ∃p ∈ U∃q ∈ Rp [Bd′(a, r) ∩A ⊆ Nq ∩A]}
We claim that

⋃{Np | p ∈ U} =
⋃{Bd′(a, r) | 〈a, r〉 ∈ S(U)}. It is enough

to prove that Np =
⋃{Bd′(a, r) | ∃q ∈ Rp [Bd′(a, r) ∩ A ⊆ Nq ∩ A]}. If

x ∈ Bd′(a, r) and Bd′(a, r) ∩ A ⊆ Nq then x ∈ cl(Nq) ⊆ Np. Conversely, if
x ∈ Np then there is a q ∈ Rp with x ∈ Nq. We know that there is a ball
Bd(a, r) with x ∈ Bd(a, r) and Bd(a, r) ⊆ Nq. Thus there is a ball Bd′(a′, r′)
such that x ∈ Bd′(a′, r′) and Bd′(a′, r′) ⊆ Bd(a, r) ⊆ Nq. This finishes the
proof that an open set in the poset topology in open in the topology induced
by d′.

Now suppose that x ∈ X and r ∈ Q+ are given. We will uniformly
construct a set U ⊆ P such that Bd′(x, r) =

⋃
p∈U Np. Because the proof is

uniform, we may write each open set in the metric topology induced by d′

as an open set in the poset topology.
Let U be the set of all p ∈ P such that there is an a ∈ A ∩ Np and an

s ∈ Q+ such that d′(a, b)+d′(a, x)+s < r for all b ∈ A∩Np. It follows that if
p ∈ U and y ∈ Np then y ∈ Bd′(x, r). Conversely, if y ∈ Bd′(x, r) then there
is an a ∈ A and an s ∈ Q+ such that d′(x, a)+2s < r and d′(a, y) < s. This
follows from the fact that A is a dense subset of X in all three topologies
at hand. Since y ∈ Bd′(a, s), and the metric d′ is compatible with d, there
is a metric ball Bd(b, t) ⊆ Bd′(a, s) with y ∈ Bd(b, t). Since X is metrizable
with metric d, there is a p ∈ P such that x ∈ Nq′ ⊆ Bd(b, t). Because
Bd(b, t) ⊆ Bd′(a, s), we see that d′(a, b) + d′(a, x) + s < r for all b ∈ A∩Np.
We have now shown that Bd′(x, r) =

⋃
p∈U Np.

We have now shown that X is completely metrizable with metric d. It
remains to show that X is homeomorphic to a complete separable metric
space. The previous claim shows that we may use arithmetical comprehen-
sion to uniformly convert codes for open subsets in the poset topology on
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X to codes for open sets in the metric topology on X, and vice versa. It
is thus straightforward to construct codes for a continuous open bijection
h : X → 〈Â, d′〉 and its inverse.

Lemma 4.3.32. (ACA+
0 ) Each strongly regular countably based UF space

is completely metrizable and homeomorphic to a complete separable metric
space.

Proof. The proof is parallel to the proof of Lemma 4.3.31.

4.3.3 Metrization and Π1
2-CA0

In this section, we show that the following propositions are equivalent to
Π1

2-CA0 over Π1
1-CA0.

1. Every regular countably based MF space is strongly regular.

2. Every regular countably based MF space is completely metrizable.

3. Every regular countably based MF space is homeomorphic to a com-
plete separable metric space.

(See Definitions 3.2.26 and 3.2.24.) These reversals are remarkable because
no other theorem of core mathematics provable in second-order arithmetic
is known to imply Π1

2 comprehension. These results give evidence for the
popular opinion that general topology is somehow less constructive than
other mathematics.

We remark that the base system for there reversals is Π1
1-CA0, which is

quite strong. In order to have a good theory of countably based MF spaces,
it is necessary to assume Π1

1 comprehension in order to show that every
filter on a countable poset extends to a maximal filter (see Theorem 4.1.5).
This extension property, a consequence of Zorn’s Lemma, is a basic aspect
of maximal filters. Thus, the use of Π1

1-CA0 as a base system is acceptable
when we are dealing with MF spaces.

Theorem 4.3.33. The proposition that every countably based regular MF
space is homeomorphic to a complete separable metric space is equivalent
to Π1

2-CA0 over Π1
1-CA0.

We have already shown that Π1
2-CA0 proves that every regular countably

based MF space is homeomorphic to a complete separable metric space
(Corollary 4.3.26). We postpone the rest of the proof of Theorem 4.3.33 to
prove two lemmas. The first lemma gives a sufficient condition for Π1

2-CA0

to hold.
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Lemma 4.3.34. (Π1
1-CA0) There is a Π1

1 formula Ψ(n, f, h) with one free
number variable and two free set variables such that for each n ∈ N and
h ∈ NN there is at most one f ∈ NN such that Φ(n, f, h) holds, and the
existence of the set {n | ∃fΨ(n, f, h)} for every h implies Π1

2-CA0.

Proof. Let Φ(n, h) be a Σ1
2 formula such that for each Σ1

2 formula Θ(n, h)
with the free variables shown there is an m such that ∀h∀n(Θ(n, h) ⇔
Φ(2m3n, h)) holds. The existence of such a formula is provable in ACA0; see
[Sim99, Lemma V.1.4].

Let Φ(n, h) ≡ ∃f Θ(n, f, h), where Θ is Π1
1. We apply Π1

1 uniformization
(which is provable in Π1

1-CA0; see [Sim99, Lemma VI.2.1]) to Θ to obtain a
formula Ψ(n, f, h) such that

∀n∀f ∀g [(Ψ(n, f, h) ∧Ψ(n, g, h)) ⇒ f = g].

and
∀n [∃f Θ(n, f, h) ⇔ ∃g Ψ(n, g, h)].

It is immediate that Ψ satisfies the conclusions of the lemma.

The next lemma shows that every coanalytic subspace of Baire space
may be represented as a closed subset of a Hausdorff MF space.

Lemma 4.3.35. (Π1
1-CA0) Let S be a coanalytic subset of NN. There is a

countable poset P such that MF(P ) is Hausdorff and there is a closed subset
C of MF(P ) such that C is homeomorphic to S, which inherits a topology
as a subspace of NN. Moreover, MF(P ) is a regular space if S is finite.

Proof. Let Ψ(X) be a Π1
1 formula with one free set variable such that S =

{X | Ψ(X)}. There may be number and set parameters in Ψ. Write Ψ in
normal form: there is a ∆0

0 formula ρ such that Ψ(X) ⇔ ∀Y ∃nρ(X[n], Y [n])
for all X ∈ NN.

Let

P = {〈σ〉 | σ ∈ N<N} ∪ {〈σ, τ〉 | σ, τ ∈ N<N ∧ |σ| = |τ | ∧ ρ(σ, τ)}.

The order on P is smallest order containing the following:

1. 〈σ〉 ≺ 〈σ′〉 for all σ′ ⊆ σ

2. 〈σ, τ〉 ≺ 〈σ′, τ ′〉 for all σ′ ⊆ σ and τ ′ ⊆ τ

3. 〈σ, τ〉 ≺ 〈σ′〉 for all σ′ ⊆ σ.
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We will now characterize all the filters in MF(P ) into three disjoint classes.
Class 1 consists of the principal filters on P . Class 2 consists of the non-
principal filters which contain an element of P of the form 〈σ, τ〉. Class 3
consists of the nonprincipal filters which do not contain an element of the
form 〈σ, τ〉. It is clear that this list is exhaustive. The filters in class 1
are generated by minimal elements of P , while all other filters contain an
infinite strictly descending sequence. If F is a filter in class 2 then there
must be XF , YF ∈ NN such that F = {〈XF [m], YF [m]〉 | m ∈ N}; clearly
∀mρ(XF [m], YF [m]) holds and thus Ψ(XF ) is false. A filter G in class 3
has no minimal element but does not contain a condition of the form 〈σ, τ〉.
Thus every condition in G is of the form 〈σ〉 and there is an XG ∈ NN such
that G = {〈XG[m]〉 | m ∈ N}. Because G is maximal, there must not be
a Y ∈ NN such that ∀mρ(XG[m], Y [m]) holds. Thus Ψ(XG) holds. This
shows that the filters in class 3 are in correspondence with the elements of
{X | Ψ(X)}. The subspace topology of MF(P ) on the set of maximal filters
of class 3 is clearly the same as the Baire topology.

The set of all the filters of class 3 is closed in MF(P ), because it is the
complement of the open set {〈σ, τ〉 ∈ P}.

The proof that MF(P ) is Hausdorff requires several cases. We prove
the only nontrivial case. Suppose that F ∈ MF(P ) is a filter of class 2
and G ∈ MF(P ) is of class 3. As above, let F = {〈XF [m], YF [m]〉} and
let G = {〈XG[m]〉}. Since F 6= G, XF 6= XG. Thus for some m we have
XG[m] ⊥ XF [m]. Thus G ∈ N〈XG[m]〉, F ∈ N〈XF [m]〉, and NXG[m]∩NXF [m] =
∅.

Now assume that {X | Ψ(X)} is finite. We show that MF(P ) is regular.
Because MF(P ) satisfies the T1 axiom, we only need to show that MF(P )
satisfies the T3 axiom. That is, given a filter F ∈ MF(P ) and a neighborhood
Np of F we must show that there is a neighborhood Nq of F such that
cl(Nq) ⊆ Np. The proof divides into three cases, depending on the class of
filter that F belongs to.

If F is in class 1, then we may take q to be the minimal element of P
which generates F ; for Nq = {F} and thus Nq = cl(Nq).

If F is in class 2, and there is no filter of class 3 in Np, then Np is
closed. If there is a filter G of class 3 in Np, then it may happen that
G ∈ cl(Np). But because G is in class 3, it must be that there is a condition
q = 〈σ, τ〉 ∈ F , with q < p, and a condition 〈σ′〉 ∈ G such that σ ⊥ σ′;
otherwise G ⊆ F , which is impossible. By extending σ, σ′ if necessary, we
can ensure that there is no G′ ∈ C at all with 〈σ〉 ∈ G′. This is because C
is finite. Thus C ∩ cl(Nq) = ∅. Thus any filter in the closure of Nq is of
class 1 or class 2. It is clear that a filter of class 1 or 2 in the closure of Nq
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is actually in Nq; thus F ∈ cl(Nq) ⊆ Np.
If F is in class 3, then p is of the form 〈σ〉. We claim that Np is closed.

Let G be a filter not in Np. If G is of class 1 then G is isolated and thus
G 6∈ cl(Np). If G is in class 2 then G must be in a neighborhood of the form
〈σ′〉 with σ ⊥ σ′; thus G 6∈ cl(Np). If G is of class 3 then there is a σ′ such
that G′ ∈ N〈σ′〉 and σ ⊥ σ′; thus G′ 6∈ cl(Np). This shows that Np is closed.

We have exhausted the three cases; thus MF(P ) is regular.

Proof of Theorem 4.3.33. Let Ψ(n, f, h) be the Π1
1 formula constructed in

Lemma 4.3.34 and let h ∈ NN be fixed. For each n ∈ N we construct a poset
Pn by applying Lemma 4.3.35 to the Π1

1 formula Ψ(f), where n and h are
held constant.

Let P be the disjoint union of the posets {Pn}, such that p ⊥ q if
p ∈ Pn and q ∈ Pm for n 6= m. The topological space MF(P ) is the
topological disjoint union of the spaces MF(Pn). Thus MF(P ) is regular,
because MF(Pn) is regular for each n ∈ N.

By assumption, there is a homeomorphism φ from MF(P ) to a complete
separable metric space 〈X̂, d〉. We may use the homeomorphism to find a
closed set C ′ ⊆ X̂ such that C ∼= C ′. Working in Π1

1-CA0, we may form
a countable dense subset 〈c′i〉 of C ′. Because every point of C ′ is isolated
in C ′, we see that this dense subset must actually equal C ′. Now for all n
we have ∃fΨ(n, f) if and only if ∃mΨ(n, φ−1(c′m)); so we may form the set
{n | ∃fΨ(n, f, h)} using Π1

1 comprehension. Because h was arbitrary, this
set exists for each h; this implies Π1

2-CA0.

The proof of Theorem 4.3.33 would still be valid if we chose a different
method for coding homeomorphisms, so long as we are able to uniformly
define the images and preimages of points and open sets with arithmetical
formulas.

Corollary 4.3.36. The proposition that every countably based regular
MF space is completely metrizable is equivalent to Π1

2-CA0 over Π1
1-CA0.

Proof. Construct the poset P and closed subset C of MF(P ) exactly as in
the proof of Theorem 4.3.33. Assume that d is a complete metric on MF(P ).
Because C is a closed subset of MF(P ) in the poset topology, C is a closed
subset in the metric topology. Thus there a sequence U of metric balls on
MF(P ) such that C = MF(P ) \ U . For each n ∈ N let An be a countable
dense subset of MF(Pn).

For each n ∈ N, the poset Pn has a filter of class 3 if and only if there
is a Cauchy sequence of filters in An which converges to a point not in U .
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This can be seen to be a Σ1
1 property of n; working in Π1

1-CA0, we may form
the set of such n. This completes the proof.

Corollary 4.3.37. The proposition that every countably based regular
MF space is strongly regular is equivalent to Π1

2-CA0 over Π1
1-CA0.

Proof. A proof in Π1
2-CA0 that every countably based regular poset space is

strongly regular is given in Lemma 4.3.7. To prove the reversal, we reason in
Π1

1-CA0. Let X be a countably based regular MF space; by assumption, X is
strongly regular. Thus X is homeomorphic to a complete separable metric
space (Corollary 4.3.26). This shows that every countably based regular
MF space is homeomorphic to a complete separable metric space. We apply
Theorem 4.3.33 to show that Π1

2-CA0 holds.

The Reverse Mathematics strength of the statement “every countably
based regular UF space is strongly regular” is unknown (see Problem 4.3.8).
The next example is closely related to Example 2.3.7.

Example 4.3.38. We construct a computable poset P such that MF(P )
is Hausdorff but not regular. Let C be the set of functions in NN which
are eventually zero. Because C is Π1

1 (actually, C is Σ0
2), we may apply

Lemma 4.3.35 to obtain a countable poset P such that C is homeomorphic
to a closed subspace of MF(P ). The lemma shows that MF(P ) is Hausdorff.
It can be seen that MF(P ) is not regular, using the fact that C is dense in
NN.

4.3.4 Summary

We now summarize the results we have obtained regarding metrization of
poset spaces.

The following statements about MF spaces hold.

1. “Every countably based regular MF space is metrizable” is provable
in Π1

2-CA0 and implies ACA0 over RCA0 (Corollary 4.3.16 and Corol-
lary 4.3.3).

2. “Every countably based regular MF space is completely metrizable”
is equivalent to Π1

2-CA0 over Π1
1-CA0 (Corollary 4.3.36).

3. “Every countably based regular MF space is homeomorphic to a com-
plete separable metric space” is equivalent to Π1

2-CA0 over Π1
1-CA0

(Theorem 4.3.33).
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4. “Every countably based regular MF space is strongly regular” is equiv-
alent to Π1

2-CA0 over Π1
1-CA0 (Corollary 4.3.37).

5. “Every strongly regular countably based MF space is metrizable” is
provable in ACA+

0 and implies ACA0 over RCA0 (Corollary 4.3.13 and
Lemma 4.3.6).

6. “Every metrizable strongly regular countably based MF space is com-
pletely metrizable” is provable in Π1

1-CA0 (Lemma 4.3.31).

7. “Every metrizable strongly regular countably based MF space is home-
omorphic to a complete separable metric space” is provable in Π1

1-CA0

(Lemma 4.3.31).

It is an open problem to determine the exact strength Urysohn’s Metriza-
tion Theorem for MF spaces, which is statement (1) above. The strengths
of statements (5) and (6) are also unknown.

The following statements about UF spaces hold.

1. “Every countably based regular UF space is metrizable” implies ACA0

over RCA0 and is provable in Π1
1-CA0 (Corollary 4.3.16 and Theo-

rem 4.3.2).

2. “Every countably based regular UF space is completely metrizable”
implies ACA0 over RCA0 and is provable in Π1

1-CA0 (Corollary 4.3.28
and Theorem 4.3.2).

3. “Every countably based regular UF space is homeomorphic to a com-
plete separable metric space” implies ACA0 over RCA0 and is provable
in Π1

1-CA0 (Theorem 4.3.27 and Theorem 4.3.2).

4. “Every countably based regular UF space is strongly regular” is prov-
able in Π1

1-CA0 (Lemma 4.3.7)

5. “Every strongly regular countably based UF space is metrizable” is
provable in ACA+

0 and implies ACA0 over RCA0 (Corollary 4.3.14 and
Lemma 4.3.6).

6. “Every strongly regular countably based UF space is completely metriz-
able” is provable in ACA+

0 (Lemma 4.3.32).

7. “Every strongly regular countably based UF space is homeomorphic to
a complete separable metric space” is provable in ACA+

0 (Lemma 4.3.32).
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It is an open problem to determine the exact strengths of the statements in
(1)–(6).

Remark 4.3.39 (Weak metrizability). It is possible to reprove the re-
sults in Section 4.3, replacing metrizability with weak metrizability (Defini-
tion 3.2.26). Note that metrizability implies weak metrizability over RCA0,
and thus the other results we have obtained about metrizability give lower
bounds on the strength of the corresponding results for weak metrizability.
The following results about weak metrizability are known.

1. “Every regular countably based MF space is weakly metrizable” is
provable in Π1

2-CA0 and implies ACA0 over RCA0 (Corollary 4.3.4 and
Corollary 4.3.16).

2. “Every strongly regular countably based MF space is weakly metriz-
able” is provable in ACA+

0 and implies ACA0 over RCA0 (Corollary 4.3.4
and Corollary 4.3.13).

3. “Every regular countably based UF space is weakly metrizable” is
provable in Π1

1-CA0 and implies ACA0 over RCA0 (Corollary 4.3.4 and
Corollary 4.3.16).

4. “Every strongly regular countably based UF space is weakly metriz-
able” is provable in ACA+

0 and implies ACA0 over RCA0 (Corollary 4.3.4
and Corollary 4.3.14).

We do not know the precise Reverse Mathematics strength of any theo-
rem involving weak metrizability.

4.4 Compactness and sequential compactness

In this section, we consider the Reverse Mathematics of compact poset
spaces. We show, in RCA0, that the sequential closure of a countable set
coincides with the full closure of the set. We prove that ACA0 is equiva-
lent over WKL0 to the proposition that every sequence in a compact poset
space has a convergent subsequence. The remainder of the section gives a
formalization of one-point compactifications in second-order arithmetic.

Definition 4.4.1. (RCA0) A poset space is compact if every covering of
the space by open sets has a finite subcovering. More formally, X is compact
if

∀〈Ui〉 [ ∀x ∈ X ∃n (x ∈ Un) ⇒ ∃m∀x ∈ X ∃n < m (x ∈ Un)] .
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Proposition 4.4.2. RCA0 proves that every closed subspace of a count-
ably based compact poset space is compact.

A point x is in the closure of a set C if every neighborhood of x contains
an element of C; x is in the sequential closure of C if there is a sequence of
elements of C which is eventually inside every neighborhood of x. The next
lemma is a formalized version of the well-known theorem that the sequential
closure of a subset of a second-countable space is the same as the closure.

Lemma 4.4.3. (RCA0). Let X be a countably based poset space. Suppose
that C = 〈xn〉 is a sequence of points in X. If a point x ∈ X \ C is in the
closure of C then there is a subsequence 〈xni〉 converging to C.

Proof. Recall that a point x ∈ X is coded as a descending sequence of
elements of P , and thus the relation x ∈ Np is Σ0

1.
Let x = 〈pi〉 be a point in the closure of C. We construct a sequence

〈ni〉 ⊆ N by induction. Let n0 = 0. Given ni, consider the set

Mi = {m | (m)1 > ni ∧ p(m)1 ∈ x ∧ p(m)1 ∈ x(m)0},

which is nonempty because x ∈ cl(C). Let ni+1 = (mi)0, where mi is the
least element of Mi. The sequence 〈ni〉 thus defined may be defined in RCA0.
It is immediate that 〈xni〉 converges to x.

Let C = 〈xn〉 be a countable subset of a poset space. A subsequence
〈xni〉 is convergent if there exists a point x such that the subsequence is
eventually inside every neighborhood of x.

Lemma 4.4.4. (ACA0) Every sequence of points in a compact countably
based poset space has a convergent subsequence.

Proof. Let 〈xi〉 be a sequence of points in X with no convergent subsequence.
Then for any n, the set Cn = 〈xi | n ≤ i〉 is closed; this follows from
Lemma 4.4.3. Moreover, no point can occur infinitely often in the sequence
〈xi〉. We build a sequence of open sets 〈Ui〉 by letting Ui = UF(P ) \ Cn.
Note that X =

⋃
Ui, but no finite subcovering of Ui covers X. Thus X is

not compact.

Theorem 4.4.5. The following are equivalent over WKL0:

1. ACA0

2. Every sequence of points in a compact countably based poset space
has a convergent subsequence.
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Proof. The implication (1) ⇒ (2) is Lemma 4.4.4. We prove the converse
implication. We will show that (2) implies that every sequence of rationals
in the unit interval [0, 1] has a convergent subsequence. This in turn implies
ACA0 over RCA0; see [Sim99, Theorem III.2.7].

Let P = {〈q, r〉 | q ∈ Q ∩ [0, 1] ∧ r ∈ Q+} and order P by letting
〈q, r〉 ¹ 〈q′, r′〉 if |q−q′|+r < r′. RCA0 proves that UF(P ) is homeomorphic
to the complete separable metric space [0, 1] with its usual topology. Thus
WKL0 proves that P is compact, as WKL0 proves that [0, 1] has the Heine-
Borel property (see [Sim99, Theorem IV.1.5]).

Given a sequence 〈ri〉 of rationals in Q ∩ [0, 1], we construct a sequence
S = 〈xi〉 of points in UF(P ) by using the homeomorphism. Statement (2)
implies that S has a convergent subsequence. Thus 〈ri〉 has a convergent
subsequence in [0, 1].

Open Problem 4.4.6. Determine the Reverse Mathematics strength of
the Tychonoff theorem for countably based MF spaces, which states that
every countable product of compact countably based poset spaces is com-
pact.

The one-point compactification of a locally compact Hausdorff space X
is obtained by adding a new point, x∞, to X. The topology on X ∪{x∞} is
generated by the basis consisting of the open sets on X together with each
set (X∪{x∞})\cl(U), where U ⊆ X is an open set with compact closure. It
is known that the one-point compactification of a locally compact Hausdorff
space is a compact Hausdorff space, and is thus metrizable if X is second
countable; see [Kel55, Chapter 5].

The next proposition shows that our definition of the one-point com-
pactification is the same as the classical definition (as given, for example, in
Kelley [Kel55, Chapter 5]).

Proposition 4.4.7. (ZFC) Let X be a locally compact Hausdorff space
and let U be a subset of the one-point compactification of X such that
x∞ ∈ U . Then U is open if and only if X \ U is a compact subset of X.

Proof. Suppose that U is open in the one-point compactification of X. Then
X∩U is open in the topology on X, and thus X \U is closed in the topology
on X. Because U contains a basic open neighborhood of x∞, the complement
X \ U is contained in a compact subset of X. Thus X \ U is compact.

Conversely, let C be a compact subset of X. We show that U = (X \
C) ∪ {x∞} is open in the one-point compactification of U . Any point of
X \ C has an open neighborhood disjoint from C. We only need to show
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that x∞ has an open neighborhood disjoint from C. Let V be the set of
all precompact open sets which have nonempty intersection with C; this is
a covering of C because X is locally compact. Let V ′ be a finite subset
of V such that C ⊆ ⋃

V ′. Now
⋃

V ′ is open and precompact, because it
is a finite union of precompact open sets. Thus X \ cl(V ′) is a basic open
neighborhood of x∞ in the one-point compactification of X, and this open
neighborhood is disjoint from C.

We say that a countably based MF space X is strongly locally compact
if there is a sequence 〈Ui〉 of open subsets of X such that cl(Ui) is compact
for each i ∈ N and every x ∈ X is in Uj for some j ∈ N.

Open Problem 4.4.8. Determine the Reverse Mathematics strength of
the following proposition, which is provable in second-order arithmetic. If X
is a locally compact Hausdorff countably based MF space then X is strongly
locally compact. The same question may be asked for UF spaces.

Theorem 4.4.9. (ACA0) Let P be a countable poset such that MF(P ) is
a strongly locally compact Hausdorff space. There is a countable poset Q
such that MF(Q) is the one-point compactification of MF(P ). This means
that MF(Q) is a compact Hausdorff space and there is a point x∞ ∈ MF(Q)
such that MF(P ) is homeomorphic to MF(Q) \ {x∞}.
Proof. For p ∈ P and U ⊆ P , we write p ¹ U to mean that p ¹ q for some
q ∈ U . The poset Q consists of those elements of p such that p ¹ Uk for
some k along with countably many new elements {qi | i ∈ N}. For each
p ∈ P ∩ Q, we put p ¹Q qj if p ⊥ Uk for k ≤ j. The order on Q is the
transitive closure of these relations and the order on P ∩Q.

The filter x∞ = {qi | i ∈ N} is a maximal filter on Q; given any p ∈ P∩Q,
there is a Uj such that p ¹ Uj , and thus p ⊥ qj . Conversely, if x ∈ MF(Q)
and there is a p ∈ P such that p ∈ x, we claim that x′ = ucl(x ∩ P ) is a
maximal filter on P . Suppose not; then there is a p′ ∈ P such that x ∪ {p′}
extends to a filter on P . This extension filter contains a common extension
r of p and p′; thus r ¹ Uj whenever p ¹ Uj . Because x ∈ MF(Q), we see
that r ∈ x, which implies p′ ∈ ucl(x ∩ P ).

We have thus shown that MF(Q) is in one-to-one correspondence with
MF(P ) ∪ {x∞}. Moreover, the set {〈0, p, p〉 | p ∈ P ∩Q} encodes a homeo-
morphism from MF(P ) to MF(Q) \ {x∞}.

It remains to show that MF(Q) is a compact Hausdorff space; the proof
in ACA0 mirrors the classical proof.
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To show that MF(Q) is Hausdorff, fix distinct x, y ∈ MF(Q). If neither
of x, y is x∞ then there are disjoint neighborhoods of x, y in Q because there
were disjoint neighborhoods in P . If, say x = x∞, then there is some j such
that y ∈ Uj . Thus Nqj and Uj are disjoint neighborhoods of x∞ and y,
respectively.

To see that MF(Q) is compact, let {Vi} be an arbitrary covering of
MF(Q) by open sets. Then there is a j such that x∞ ∈ Vj , and thus there is
a k such that Nqk

⊆ Vj . Because cl(Uk) is compact and {Vi | i ∈ N} covers
cl(Uk), there is an l such that {Vi | i ≤ l} covers Uk. Thus {Vi | i ≤ l}∪{Vj}
covers MF(Q).

Corollary 4.4.10. (ACA0) Let P be a countable poset such that UF(P )
is a strongly locally compact Hausdorff space. There is a countable poset Q
such that UF(Q) is the one-point compactification of UF(P ), that is, UF(Q)
is a compact Hausdorff space and there is a point x∞ ∈ UF(Q) such that
UF(P ) is homeomorphic to UF(Q) \ {x∞}.
Proof. Define a poset Q exactly as in the proof of Theorem 4.4.9. The filter
x∞ = {qi | i ∈ N} is a unbounded in Q. Any other unbounded filter on
Q contains an element of Q ∩ P , and thus must be unbounded in P . Thus
UF(Q) is in one-to-one correspondence with UF(P )∪{x∞}. The rest of the
proof of Theorem 4.4.9 goes through unchanged.

Lemma 4.4.11. (ACA0) Every locally compact Hausdorff countably based
poset space is regular.

Proof. We formalize the classical proof, as described in [Kel55, Chapter 5].
Let P be a countable poset such that MF(P ) is a compact Hausdorff space.
We wish to show that MF(P ) is regular. Let x ∈ MF(P ) and p ∈ P be
such that x ∈ Np. Because X is locally compact, we may assume that p is
precompact.

Form the set U = {q ∈ P | ∃r ∈ P [r ⊥ q ∧ x ∈ Nr]}. Then every
y ∈ MF(P ) distinct from x is in NU , because MF(P ) is Hausdorff. Thus
U ∪ {p} gives an open covering of X. In particular, U ∪ {p} is an open
covering of cl(Np). Let V = {p0, . . . , pn, p} be a finite subset of U ∪{p} such
that cl(Np) ⊆ NV . It must be that p ∈ V , because no other basic open set
in U contains x. Moreover, x 6∈ Npi for i ≤ n. Let Wi = {q ∈ P | q ⊥ pi} for
each 0 ≤ i ≤ n. Then x ∈ Wi for i ≤ n and thus there is an r ∈ x such that
r ¹ p and r ¹ Wi for i ≤ n. It is straightforward to show that cl(Nr) ⊆ Np.
We have thus shown that MF(P ) is regular.
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Corollary 4.4.12. (Π1
2-CA0) If a Hausdorff countably based MF space is

strongly locally compact then it is metrizable, completely metrizable, and
homeomorphic to a complete separable metric space.

Proof. Let P be a countable poset such that X = MF(P ) is strongly locally
compact. We reason in Π1

2-CA0. By Corollary 4.4.10, X embeds in its
one-point compactification Y . By Lemma 4.4.11, Y is regular. Thus Y is
metrizable (Theorem 4.3.14), completely metrizable, and homeomorphic to
a complete separable metric space (Corollary 4.3.25).

Corollary 4.4.13. (Π1
1-CA0) If a Hausdorff countably based UF space is

strongly locally compact then it is metrizable, completely metrizable, and
homeomorphic to a complete separable metric space.

Proof. Let P be a countable poset such that X = UF(P ) is strongly locally
compact. We reason in Π1

1-CA0. By Theorem 4.4.10, X embeds in its
one-point compactification Y . By Lemma 4.4.11, Y is regular. Thus Y is
metrizable (Theorem 4.3.14), completely metrizable and homeomorphic to
a complete separable metric space (Theorem 4.3.27).

The Reverse Mathematics strength of Corollaries 4.4.12 and 4.4.13 is
not known. All of the reversals we have presented in this thesis have used
noncompact MF spaces. This motivates the following question.

Open Problem 4.4.14. Determine the Reverse Mathematics strength of
the proposition that every locally compact Hausdorff countably based MF
space is metrizable. The same question may be asked for UF spaces. We
ask similar questions with “metrizable” replaced with “weakly metrizable,”
“completely metrizable,” and “homeomorphic to a complete separable met-
ric space.” We ask similar questions if X is compact.

A open subset U of a metric space is totally bounded if for each n ∈ N
there is a finite set Dn of points in U such that every point in U is within
distance 1/n of some point in Dn. A metric space is locally totally bounded
if every point is contained in a totally bounded open ball. The next the-
orem answers a question of of Hirst [Hir93], who asks if it is provable in
second-order arithmetic that every locally totally bounded complete sepa-
rable metric space has a one-point compactification.

Theorem 4.4.15. (Π1
1-CA0) Let Â be a complete separable metric space

which is locally totally bounded. Then there is an embedding of Â into its
one-point compactification.
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Proof. The set of 〈a, r〉 ∈ A × Q+ such that B(a, r) is totally bounded is
arithmetically definable; thus we may form a sequence 〈〈ai, ri〉 | i ∈ N〉
such that B(ai, ri) is totally bounded for each i ∈ N. WKL0 proves that a
complete separable metric space is compact if and only if it is complete and
totally bounded (see [Sim99, Theorem IV.1.5]). Thus ACA0 proves that a
locally totally bounded complete separable metric space is strongly locally
compact. Within ACA0, we may form a poset P such that Â ∼= UF(P );
UF(P ) will also be strongly locally compact. We apply Corollary 4.4.10 to
find a countable poset Q such that UF(Q) is the one-point compactification
of Â. By Lemma 4.4.11, UF(Q) is regular. The rest of the corollary follows
from Corollary 4.3.27.

Hirst [Hir93] has proved the following special case of Theorem 4.4.15
in ACA0. We prove it in ACA+

0 as a corollary of our results on one-point
compactifications of UF spaces.

Corollary 4.4.16. (ACA+
0 ) Every countable closed locally totally bounded

subset of a complete separable metric space has a one-point compactification.

Proof. Let Â = 〈zi〉 be a countable complete separable metric space. Work-
ing in ACA0, we can form the poset representation P bA. Moreover, ACA0

proves that UF (P bA) is strongly regular; the key point is that we may quan-
tify over the points of P bA with number quantifiers because Â is countable.
The rest of the corollary follows from Lemma 4.3.32 using ACA+

0 .

4.5 Cardinality and perfect sets

In this section, we formalize the results on cardinality of poset spaces which
were proved in ZFC in Chapter 2. We also explore several perfect set theo-
rems.

4.5.1 Definitions

We will prove cardinality dichotomy theorems for countably based Hausdorff
UF and MF spaces. These theorems say that an appropriate kind of space
has either as few points as possible (countably many) or as many points as
possible (one for each subset of N). Before we can prove these dichotomy
theorems, we must first define the notions of cardinality involved. It is
straightforward to define in RCA0 what it means for a poset space to be
countable.
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Definition 4.5.1. (RCA0) Let P be a countable poset and let X be UF(P )
or MF(P ). We say that X is countable if there is a sequence 〈Fi〉 ⊆ X such
that for every filter F ∈ X there is an i ∈ N such that F = Fi.

It is more difficult to say that a poset space has one point for each subset
of N, because we cannot directly construct an uncountable set of points. We
know that there are as many paths through 2<N as there are sets of natural
numbers. Recall that if g ∈ 2N and n ∈ N then g[n] = 〈g(0), . . . , g(n)〉 ∈ 2<N.

Definition 4.5.2. (RCA0) Let X be UF(P ) or MF(P ), where P is a count-
able poset. We say X has continuum-many points if there is a function
F : 2<N → P such that

1. For any g ∈ 2N, if n < m then F (g[n]) ¹ F (g[m]). In particular, the
set {F (g[n]) | n ∈ N} is linearly ordered.

2. If g, h ∈ 2N and g[n] 6= h[n] then F (g[n]) ⊥ F (h[n]).

We pause to justify the previous definition. The map F which exists if
a poset space X has continuum-many points resembles an embedding of the
Cantor space 2N into X. The existence of such an embedding would prove,
classically, that a space had at least as many points as 2N (and a space with
a countable basis can have no more points than this). The function F might
be viewed by someone “living in RCA0” as evidence that such an embedding
exists.

Remark 4.5.3. It is consistent with ZFC that there are subsets of Baire
space which have cardinality 2ℵ0 but which do not have continuum-many
points in the sense of Definition 4.5.2.

Definition 4.5.4. (RCA0) A perfect set in a poset space is a closed subset
with no isolated points in the subspace topology. We say that a definable
subset U of a poset space X contains a perfect subset if there is a perfect
subset C of X such that C ⊆ U .

Definition 4.5.5. Let X be a class of topological spaces. The perfect set
theorem for X is the proposition that every space in X is either countable
or contains a perfect subset. Thus we may speak of the perfect set theorem
for UF spaces, the perfect set theorem for closed subsets of MF spaces, etc.
We may formalize certain perfect set theorems in second-order arithmetic.

The perfect set theorem for countably based Hausdorff UF spaces is the
following proposition, expressed as a sentence in the language of second-
order arithmetic. If P is a countable poset such that UF(P ) is Hausdorff
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then either UF(P ) is countable or there is a code for a continuous open
bijection from the Cantor space into UF(P ). We may define the perfect set
theorem for countably based Hausdorff MF spaces and the perfect set theorem
for closed subsets of countably based Hausdorff MF spaces similarly.

A classical theorem shows that, in ZFC, a subset of a complete metric
space is contains a perfect set if and only if it contains a homeomorphic
image of Cantor space. This classical theorem gives a simple sufficient con-
dition for the existence of perfect sets in complete metric spaces. We obtain
a similar characterization of perfect subsets of Hausdorff UF spaces in The-
orem 4.5.22. In the remainder of Section 4.5.1, we will establish, in ACA0,
sufficient conditions for the existence of perfect subsets of countably based
poset spaces.

Open Problem 4.5.6. Suppose that U is an uncountable perfect subset
of a countably based Hausdorff MF space. Does ZFC prove that U contains
a homeomorphic image of the Cantor space? If so, is it provable in Z2?

Definition 4.5.7. (RCA0) The standard poset representation of the Cantor
space is the poset 2<N, ordered by letting τ ¹ σ if σ ⊆ τ .

Lemma 4.5.8. (RCA0) Let X be a countably based poset space and let U
be a definable subset of X. If h is a continuous injection from the (standard
poset representation of) Cantor space to a closed subset C of U , then U
contains a perfect subset.

Proof. Let h be a continuous injection from 2N to U , and let C ⊆ U be the
closed set which is the range of h. We only need to show that C has no
isolated points. Let x ∈ C and choose p ∈ P with x ∈ Np. By assumption,
there is an f ∈ 2N such that h(f) = x. Because h is continuous, there is an
n ∈ N such that h(g) ∈ Np for any g ∈ 2N such that g[n] = f [n]. We can
effectively choose f ′ ∈ 2N such that f [n] = f ′[n] and f ′(n + 1) 6= f(n + 1).
Thus h(f ′) ∈ Np, and h(f ′) 6= h(f) because h is injective. This shows that
h(f) is not an isolated point of h(2N).

Definition 4.5.9. (RCA0) A function F from a countable poset P to a
countable poset Q is order preserving if p ¹P p′ ⇔ F (p) ¹Q F (p′) and
p ⊥P p′ ⇔ F (p) ⊥Q F (p′) for all p, p′ ∈ P . If F is an order-preserving map
from 2<N to P , we let

F (f) = {F (σ) | σ ⊆ f}

for each f ∈ 2N.
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Lemma 4.5.10. (ACA0) Let P be a countable poset and let X be MF(P )
or UF(P ). Suppose that F is an order-preserving map from 2<N to P such
that F (f) ∈ X for all f ∈ 2N. Then there is a continuous injection h from
2N to X such that h(f) = F (f) for all f ∈ 2N. Moreover, the range of h is
a closed subset of U .

Proof. We let H = {〈σ, p〉 ∈ 2<N × P | F (σ) = p}. Let h be the continuous
function coded by H. It is clear that h(f) = F (f) for all f ∈ 2N. In
particular, h is a total continuous function. Because F is order preserving,
h is an injection. It remains to show that the range of h is closed.

Claim: Each point y ∈ X is in the range of h if and only if for every
p ∈ P with y ∈ Np there is a σ ∈ 2<N such that F (σ) ¹ p. One direction of
the proof is easy. If F (f) = y then y = ucl({F (f [n]} | n ∈ N}.

To prove the other direction, suppose that for every p ∈ P such that
y ∈ Np there is a σ ∈ 2<N such that F (σ) ¹ p. Choose p, p′ ∈ y and choose
σ, σ′ ∈ 2<N such that F (σ) ¹ p and F (σ′) ¹ p′. Because p and p′ are
compatible and F is order preserving, σ and σ′ are compatible. This shows
that the set f = {σ ∈ 2<N | F (σ) ∈ y} is linearly ordered. Suppose that f
is finite. Then there is a σ such that y = ucl({F (σ)}. Thus NF (σ) = {y}.
This means that any two extensions of F (σ) in P are compatible. This is
impossible, because F is order preserving and thus F (σ a 〈0〉) ⊥ F (σ a 〈1〉.
Thus f is infinite, that is, f ∈ 2N. Clearly, F (f) = y. This finishes the proof
of the claim.

We now form the coded open set

V = {q ∈ P | ¬ ∃σ ∈ 2<N [F (σ) ¹ q]}

by arithmetical comprehension. The claim above shows that a point y ∈ X
is in NV if and only if y is not in the range of h. Thus the range of h is
closed.

Remark 4.5.11. Lemma 4.5.10 has a more straightforward proof in ZFC,
which uses the fact that 2N is compact.

We now give the first sufficient condition for the existence of perfect
subsets of countably based poset spaces.

Theorem 4.5.12. (ACA0) Let P be a countable poset and let X be MF(P )
or UF(P ). Let U be a definable subset of X. Suppose that there is an order-
preserving map F from 2<N to P such that F (f) ∈ U for all f ∈ 2N. Then
U has a perfect subset.
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Proof. Combine Lemmas 4.5.8 and 4.5.10.

We will develop one more sufficient condition for the existence of perfect
sets.

Definition 4.5.13. Let X be a countably based poset space. We may
identify X with a subset of 2N by taking characteristic functions. Let U be
a definable subset of X. Let T be a perfect subtree of 2<N. We that T codes
a perfect subset of X in the Baire topology if for each f ∈ [T ] the set xf

whose characteristic function is f is a filter in X, and for distinct f, g ∈ [T ]
we have xf 6= xg.

Lemma 4.5.14. (ACA0) Let X be a Hausdorff countably based poset
space, and let U be a definable subset of X. Suppose that there is a perfect
subset of U in the Baire topology. Then U has a perfect subset.

Proof. Let 〈pi〉 be the standard enumeration of P . Let T code a perfect
subset of U in the Baire topology. Only countably many f ∈ [T ] may
have the property that there is an k ∈ N such f(k) = 0 that for all n >
k; each such f corresponds to a minimal element of the poset. We may
effectively find a perfect subtree of T such that no path through the subtree
this property. We replace T by such a perfect subtree if necessary.

We construct an order-preserving map h : 2<N → 2<N by induction. Let
h send the empty sequence to itself. Suppose h is defined on σ ∈ 2<N. We
may canonically choose distinct paths f0, f1 ∈ [T ] such that σ ⊆ fm for
m = 0, 1. Because f0 and f1 are distinct paths through T , they correspond
to distinct filters in X. Because X is Hausdorff, there are k0, k1 > lh(σ)
such that f0(k0) = 1, f1(k1) = 1, and the poset elements p, p′ represented
by k0 and k1 respectively are incompatible. Let h(σ a 〈m〉) = km for
m = 0, 1. This completes the construction of h. It is straightforward to
verify that the map F : σ 7→ plh(h(σ)) is an order-preserving map from 2<N

to P and F (f) ∈ U for all f ∈ 2N. Thus, by Theorem 4.5.12, U has a perfect
subset.

4.5.2 Perfect sets and UF spaces

In this section, we formalize the poset star game of Section 2.2.2 to prove
the perfect set theorem for countably based Hausdorff UF spaces. We show
that the perfect set theorem for countably based Hausdorff UF spaces is
equivalent to ATR0 over ACA0. We also show that the perfect set theorem
for analytic subsets of Hausdorff UF spaces is equivalent to ATR0 over ACA0.
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We begin by stating some definitions from [Sim99, Section V.8]. A strat-
egy for i is a function si from

⋃
n∈NN2n to N. A strategy for ii is a function

sii from
⋃

n∈NN2n+1 to N. If si is a strategy for i and sii is a strategy for ii,
we define si ⊗ sii ∈ NN to be the unique function such that

(si ⊗ sii)(2n + 1) = si

(
(si ⊗ sii)[2n]

)
,

(si ⊗ sii)(2n + 2) = sii

(
(si ⊗ sii)[2n + 1]

)
,

for all n ∈ N. Thus si⊗ sii is the play which results when i plays strategy si

and ii plays strategy sii.
Let Φ(X) be an L2-formula with one free set variable. We say that Φ is

determined if

∃si∀siiΦ(sI ⊗ sii) ∨ ∃sii∀si¬Φ(si ⊗ sii), (4.5.1)

where si ranges over strategies for i and sii ranges over strategies for ii.
Because si ⊗ sii is definable from si and sii by primitive recursion, we see
that that (4.5.1) is expressible in the language of second-order arithmetic.
The following theorem is due to Steel [Ste76]; a proof may also be found in
[Sim99, Section V.9].

Theorem 4.5.15 (Steel). ATR0 proves that every Σ0
1 or Π0

1 formula with
one free set variable is determined.

The theorem may be rephrased to say that ATR0 proves that closed and
open subsets of NN are determined.

We next define a formula Φc(f, P ) which says that f is a winning play
for i in the poset star game on P :

Φc(f, P ) ≡ ∀n(pn
0 ∈ P ∧ pn

1 ∈ P ) ∧ ∀n(pn
0 ⊥P pn

1 )

∧ ∀n(f(2n + 2) ∈ {0, 1} ∧ pn+1
0 ¹ pn

f(2n+2) ∧ pn+1
1 ¹ pn

f(2n+2)),

where pn
i is an abbreviation for the element at position (f(2n + 1))i in the

standard enumeration of P . It is straightforward to see that Φc can be
written as a Π0

1 formula. Thus ATR0 proves that Φc is determined.

Lemma 4.5.16. (RCA0) Let P be a countable poset such that UF(P ) is
Hausdorff. Suppose that ∃si∀siiΦc(si⊗ sii, P ). Then UF(P ) has continuum-
many points.

Proof. We must define a map F from 2N to P with the appropriate proper-
ties. It is clear that any τ ∈ 2<N determines the initial segment of a play sii

for ii, and this play is determined by τ for |τ | stages. We may thus define
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F (τ) to be the the element of P chosen by ii at stage |τ | of the game; this is
uniquely determined by τ . The desired properties of F follow directly from
the definition of Φc.

Lemma 4.5.17. (ATR0). Let P be a countable poset such that UF(P ) is
Hausdorff. Suppose that ∃sii∀si¬Φc(si ⊗ sii, P ). Then UF(P ) is countable.

We prove this lemma by formalizing the proof of Lemma 2.3.26 in second-
order arithmetic. We first introduce some terminology which will be required
in the proof.

Let sii be a strategy for ii. We define a position to be a sequence π =
〈〈p1

0, p
1
1〉, . . . 〈pk

0, p
k
1〉〉 such that pi

0 ⊥ pi
1 for i ≤ k and π respects the strategy

sii in the sense that pi+1
j ≤ pi

sii(π[i]) for j ∈ {0, 1} and i < j. A position π is
consistent with x ∈ UF(P ) if x ∈ Nsii(π).

Lemma 4.5.18. (ACA0) Let P be a countable poset such that UF(P ) is
Hausdorff. Suppose that ∃sii∀si¬Φc(si ⊗ sii, P ). Then for every x ∈ UF(P )
there is a position π consistent with x which cannot be extended to a longer
position consistent with x.

Proof. The proof is by contradiction. If every position consistent with x ex-
tends to a longer position consistent with x, then we can compute a strategy
si for i as follows. To begin the game, i finds a position consistent with x.
At stage n, player i finds an extension π of the current position such that π
is consistent with x. Note that there is a Π0

1 formula φ(π, x) which holds if
and only if π is a position consistent with x. Thus ACA0 suffices to define
the strategy si just described.

We have defined si such that Φc(si ⊗ sii, P ) holds. This is impossible,
because sii is a winning strategy for ii.

We say that a position π is maximal for x ∈ UF(P ) if π is consistent
with x and π cannot be extended to a longer position consistent with x.
Thus Lemma 4.5.18 may be restated as: every x has a maximal position π.

If x, y are distinct points in UF(P ) then no position π can be maximal
for both x and y. For there are neighborhoods Np and Nq of x and y,
respectively, such that p and q both extend π. Thus π a 〈p, q〉 is an extension
of π which is consistent with x or y.

Proof of Lemma 4.5.17. We have already shown: for every point in UF(P )
there is a maximal position consistent with x, and no position is maximal
for two points of UF(P ). The set of (finite) positions is a countable set.
There is thus an injective map UF(P ) → N. We know that, classically, this
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implies that UF(P ) is a countable set. To show that UF(P ) is countable in
second-order arithmetic, however, we must explicitly demonstrate a function
from N onto UF(P ). In the present case, this is complicated by the fact that
the set

M = {π | ∃x ∈ UF(P )[π is maximal for x]}
is not known to be arithmetical. We will require several nontrivial conse-
quences of ATR0 to complete the proof.

The relation

Ψ(π, x) ≡ π is maximal for x and x ∈ UF(P )

is easily seen to be arithmetical; we have shown that for every π there is at
most one x such that Ψ(π, x). Thus ATR0 proves that the set M exists; see
[Sim99, Theorem V.5.2].

For each π ∈ M there is a unique xπ ∈ UF(P ) such that π is a maximal
position for xπ. We must construct the map π 7→ xπ. To do so, we will use
the Σ1

1 axiom of choice. This axiom scheme includes each sentence of the
form

∀n∃Xφ(n,X) ⇒ ∃Y ∀nφ(n, (Y )n)

in which φ is a Σ1
1 formula with the free variables shown. ATR0 proves every

instance of this scheme. We will use the instance with the formula φ(n, x)
which says that x ∈ UF(P ) and πn is a maximal position for x, where
〈πn | n ∈ N〉 is the canonical enumeration of M . We thus obtain a set Y
such that (Y )n ∈ UF(P ) for all n and, moreover, for all x ∈ UF(P ) there
is an n such that x = (Y )n. The desired n can be found by choosing π, a
maximal condition for x, and then finding n such that πn = π.

The next lemma says, roughly, that if C is a countable subset of 2N then
we may effectively find a perfect subset of 2N \ C

Lemma 4.5.19. (RCA0) Suppose that C = 〈fi | i ∈ N〉 is a sequence of
descending sequences in 2<N such that for all i either fi is always strictly
descending or there is some n such that fi[n] is strictly descending and
fi(k) = fi(n) for all k > n. Then there is an order-preserving injection F
from 2<N to 2<N such that for any g ∈ 2N we have F [g] 6∈ C.

Proof sketch. We construct F by induction. At stage n, we define F on
all sequences of length n. We ensure at stage n that if fn[n] is strictly
descending then none of the nodes in F ¹ 2n is consistent with fn[n] (we
may make F (τ) longer than τ). This construction ensures that there is no
path g such that F [g] = fn.
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Lemma 4.5.20. (ACA0) If P is a countable poset such that UF(P ) has
continuum-many points then there is an order-preserving map F from 2<N

to P such that F (f) ∈ UF(P ) for each f ∈ 2N and F (f) 6= F (g) for distinct
f, g ∈ 2N.

Proof. Let F : 2<N → P be a map which shows that UF(P ) has continuum-
many points. Fix p ∈ P and τ ∈ 2<N. Because F (τ a (0)) ⊥ F (τ a (1)),
it cannot be that p ¹ F (τ a (0)) and p ¹ F (τ a (1)). Thus the set
{τ | p ¹ F (τ)} is linearly ordered (the set may be finite or infinite). Define
fp : N→ 2<N such that

fp(0) = 〈 〉

fp(n + 1) =





fp(n) a (0) if p ¹ fp(n) a (0)
fp(n) a 〈1〉 if p ¹ fp(n) a (1)
fp(n) otherwise

RCA0 proves that the sequence C = 〈fp〉 exists, because the definition of fp

is uniform. Note that for every g ∈ 2N if p ¹ F (g[n]) for all n then fp = f .
Thus we have proved: RCA0 shows that the collection of paths through 2<N

which map to bounded filters under F is countable, and the enumeration C
includes all such paths.

We now apply Lemma 4.5.19. Let H : 2<N → 2<N be such that H[g] 6∈ C
for all g ∈ 2N. Now F ◦H : 2<N → P is an order-preserving map, and for all
g ∈ 2N we see that (F ◦H)[g] ∈ UF(P ).

Lemma 4.5.21. (ACA0) For each perfect subset C of the standard poset
representation of 2N there is a perfect subtree T of 2<N such that [T ] ⊆ C.

Proof. Let U = 〈τi〉 be the open set complementary to C. Let T0 be the set
of σ ∈ 2<N such that σ 6¹ τi for all i ∈ N. It is clear that [T0] = C. Working
in ACA0, we may form a subtree T of T0 such that T has no dead ends and
[T ] = [T0]. The tree T satisfies the conclusion of the lemma.

Theorem 4.5.22. The following are equivalent over ACA0:

1. ATR0

2. Let P be a countable poset such that UF(P ) is a Hausdorff space.
Then either UF(P ) is countable or UF(P ) contains a perfect subset.
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Proof. We first prove (2) in ATR0. We know that ATR0 proves that Φc is
determined. If i has a winning strategy, then UF(P ) has continuum-many
points (Lemma 4.5.16. Thus, by Lemmas 4.5.20 and 4.5.10, UF(P ) has a
perfect subset. If ii has a winning strategy, then UF(P ) is countable, as
shown in Lemma 4.5.17.

For the reverse implication (2)⇒(1), we use the fact that ATR0 is equiv-
alent over RCA0 to the statement “every subtree of 2<N either has countably
many paths or has a perfect subtree.” Let T be a subtree of 2<N. Give T the
poset order as a subposet of 2<N. Thus UF(P ) has one filter for each path
through T and one filter for each dead end of T . If UF(P ) is countable then
[T ] is countable as well. Suppose that UF(P ) has a perfect subset. Then,
by Lemma 4.5.21, there is a perfect subtree of T .

We next show that the perfect set theorem for analytic subsets of count-
ably based Hausdorff UF spaces is equivalent to ATR0 over ACA0.

Definition 4.5.23. (RCA0) Let P be a countable poset. A subset W of
UF(P ) is called analytic if there is a Σ1

1 formula Ψ(x) with one free set
variable such that ∀x[Ψ(x) ⇔ x ∈ W ]. We allow Ψ to have set parameters.
We identify analytic subsets of UF spaces with the extensions of the formulas
that define them.

We omit the straightforward proof of the following proposition (compare
Definition V.1.5 and Theorem V.1.7 in [Sim99]).

Proposition 4.5.24. (RCA0) Suppose that X and Y are countably based
poset spaces and there is a continuous function f : X → Y . The range of f
is an analytic subset of Y .

The perfect set theorem for analytic subsets of countably based Hausdorff
UF spaces is the following proposition, expressed as an L2 sentence. Every
analytic subset of a countably based Hausdorff UF space is either countable
or has a perfect subset.

Theorem 4.5.25. The following are equivalent over ACA0:

1. ATR0.

2. The perfect set theorem for analytic subsets of countably based Haus-
dorff UF spaces.

3. The perfect set theorem for countably based Hausdorff UF spaces.
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Proof. We first show that ATR0 proves the perfect set theorem for analytic
subsets of countably based Hausdorff UF spaces. ATR0 proves the perfect set
theorem for analytic subsets of 2N; see Theorem V.4.3 and Theorem V.1.7
of [Sim99]. Thus an analytic subset W of a countably based Hausdorff UF
space is either countable or has a perfect subset in the Baire topology. In the
latter case, W has a perfect subset in the poset topology by Lemma 4.5.14.

Because UF(P ) is an arithmetically definable subset of 2N (identifying
filters with characteristic functions), the perfect set theorem for analytic
subsets of countably based Hausdorff UF spaces implies the perfect set the-
orem for countably based Hausdorff UF spaces.

We showed in Theorem 4.5.22 that the perfect set theorem for countably
based Hausdorff UF spaces implies ATR0 over ACA0. We apply that theorem
now to complete the proof.

4.5.3 Perfect sets and MF spaces

In this section, we first consider a cardinality dichotomy theorem for count-
ably based Hausdorff MF spaces. We then turn to the perfect set theorem for
closed subsets of countably based Hausdorff MF spaces. We show that this
theorem is independent of ZFC and give a characterization of its strength.

Theorem 4.5.26. The cardinality dichotomy for MF spaces is the propo-
sition that every countably based Hausdorff MF space is either countable
or has continuum-many points. This proposition is provable in Π1

2-CA0 and
implies ATR0 over ACA0.

Proof. The reversal in Theorem 4.5.22 shows that the dichotomy theorem for
MF spaces implies ATR0 over ACA0. We sketch the proof that the dichotomy
theorem for MF spaces is provable in Π1

2-CA0. Π1
2-CA0 proves that Φc is

determined, and the proof of Lemma 4.5.16 shows that if i has a winning
strategy then MF(P ) has continuum-many points. It only remains to show
that if ii has a winning strategy then MF(P ) is countable.

Suppose ii does have a winning strategy. The proof of Lemma 4.5.18
shows that for every x ∈ MF(P ) there is a maximal position. Because
MF(P ) is Hausdorff, no position is maximal for two distinct points. We
may use Π1

2 comprehension to form the set M of all positions π for which
there is an x ∈ MF(P ) such that π is a maximal position for x. We may
then use Π1

1 choice (provable in Π1
2-CA0; see [Sim99, Theorem VII.6.9]) to

choose a sequence 〈xπ ∈ MF(P ) | π ∈ M〉 such that each position π ∈ M is
a maximal position for xπ. Thus MF(P ) = 〈xπ | π ∈ M〉 is countable.
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Definition 4.5.27. The perfect set theorem for coanalytic sets is the fol-
lowing scheme of L2 sentences. For each Π1

1 formula Ψ(x) with one free set
variable (but possibly with set parameters), either the set {x | Ψ(x)} ⊆ NN
is countable or it has a perfect subset.

Lemma 4.5.28. (ACA0) The perfect set theorem for coanalytic sets im-
plies the perfect set theorem for closed subsets of countably based Hausdorff
MF spaces.

Proof. Let P be a countable poset such that MF(P ) is Hausdorff, and let C
be a closed subset of MF(P ). Define Φ(x) ≡ Filt(x) ∧ x ∈ MF(P ) ∧ x ∈ C.
It is clear that Φ is a Π1

1 formula. An instance of the perfect set theorem for
Π1

1 sets shows that either the set defined by Φ is countable or is has a perfect
subset. If the set defined by Φ is countable then C is, trivially, countable
as well. Otherwise, there is a perfect subtree T of 2<N such that for Φ(x)
holds for all x ∈ [T ]. Then, by Lemma 4.5.14, there is a perfect subset of
MF(P ).

Lemma 4.5.29. (ACA0) The perfect set theorem for closed subsets of
countably based Hausdorff MF spaces implies the perfect set theorem for
coanalytic sets.

Proof. Let S be a Π1
1 subset of NN. Apply Theorem 4.3.35 to obtain a poset

P such that MF(P ) is Hausdorff and there is a closed set C ⊆ MF(P ) such
that S ∼= C. The perfect set theorem for closed subsets of countably based
Hausdorff MF spaces implies that C is either countable or there is a code for
a perfect subset of C. Let U be the open subset of MF(P ) complementary
to C. It is straightforward to convert U into an open subset U ′ of NN. The
complement of U ′ in NN is thus a perfect subset of S.

The proof of the next theorem follows immediately from the previous
two lemmas.

Theorem 4.5.30. The perfect set theorem for coanalytic sets is equivalent
over ACA0 to the perfect set theorem for closed subsets of countably based
Hausdorff MF spaces.

Corollary 4.5.31. The perfect set theorem for closed subsets of countably
based Hausdorff MF spaces is independent of ZFC and thus independent of
the axioms of full second-order arithmetic.

In order to draw another corollary from Theorem 4.5.30, we survey some
basic facts about Gödel’s constructible hierarchy and its formalization in
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second-order arithmetic. Gödel proved that for any set X there is a unique
smallest model L(X) of ZFC containing X and all of the ordinals. This
model is stratified: L(X) =

⋃
α∈ON Lα(X), where ON denotes the class of

ordinal numbers. Gödel showed, moreover, that every subset of N which is
in L(X) is in Lα(X) for some α < ℵL(X)

1 , where ℵL(X)
1 denotes the smallest

ordinal which is not countable in L(X).
Simpson [Sim99, Section VII.4] presents a thorough formalization of the

theory of L(A), for A ⊆ N, in second-order arithmetic. In particular, the
predicates Y ∈ L(A) and Y ∈ Lα(A) are definable in ATR0. There is thus an
L2 sentence which says that ℵL(A)

1 is countable, for A ∈ P (N). The sentence
says that there is a countable ordinal α such that for all B ⊆ N, if B ∈ L(A)
then B ∈ Lα(A).

Theorem 4.5.32. (Π1
1-CA0) The perfect set theorem for coanalytic sets

holds if and only if ℵL(A)
1 is countable for all A ⊆ N.

Proof. A proof in ZFC is given by Mansfield and Weitkamp [MW85, Chap-
ter 6]. The key tools in the proof are Kondo’s Π1

1 uniformization theorem
and the Shoenfield Absoluteness Theorem. Simpson has also shown that
Kondo’s theorem [Sim99, Theorem VI.2.6] and the Shoenfield Absoluteness
Theorem [Sim99, Theorem VII.4.14] are provable in Π1

1-CA0. Once these re-
sults have been established, it is possible to formalize the proof of Mansfield
and Weitkamp in Π1

1-CA0.

The following corollary is a straightforward combination of Theorems
4.5.30 and 4.5.32.

Corollary 4.5.33. (Π1
1-CA0) The perfect set theorem for closed subsets of

countably based Hausdorff MF spaces holds if and only if ℵL(A)
1 is countable

for all A ⊆ N.

We have now determined the precise strength of the perfect set theo-
rem for closed subsets of countably based Hausdorff MF spaces. It can be
seen that the perfect set theorem for coanalytic sets implies the perfect set
theorem for countably based Hausdorff MF spaces, but we do not know the
strength of the latter perfect set theorem. Theorem 4.5.26 shows that the
cardinality dichotomy theorem for countably based Hausdorff MF spaces is
provable in Π1

2-CA0 and implies ATR0.

Open Problem 4.5.34. Is the perfect set theorem for countably based
Hausdorff MF spaces provable in ZFC? Is it provable in full second-order
arithmetic?
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