AN INCOMPLETENESS THEOREM FOR β_n -MODELS

CARL MUMMERT^{\dagger} AND STEPHEN G. SIMPSON^{\ddagger}

Abstract. Let *n* be a positive integer. By a β_n -model we mean an ω -model which is elementary with respect to Σ_n^1 formulas. We prove the following β_n -model version of Gödel's Second Incompleteness Theorem. For any recursively axiomatized theory *S* in the language of second order arithmetic, if there exists a β_n -model of *S*, then there exists a β_n -model of *S* + "there is no countable β_n -model of *S*". We also prove a β_n -model version of Löb's Theorem. As a corollary, we obtain a β_n -model which is not a β_{n+1} -model.

§1. Introduction. Let ω denote the set of natural numbers $\{0, 1, 2, ...\}$. Let $P(\omega)$ denote the set of all subsets of ω . An ω -model is a nonempty set $M \subseteq P(\omega)$, viewed as a model for the language of second order arithmetic. Here the number variables range over ω , the set variables range over M, and the arithmetical operations are standard. For n a positive integer, a β_n -model is an ω -model which is an elementary submodel of $P(\omega)$ with respect to Σ_n^1 formulas of the language of second order arithmetic.

Recently Engström [3] posed the following question: Does there exist a β_n -model which is not a β_{n+1} -model? To our amazement, there seems to be no answer to this question in the literature.

Previous research has focused on minimum β_n -models. A minimum β_n -model is a β_n -model which is included in all β_n -models. If a minimum β_n -model exists, then obviously it is unique, and it is not a β_{n+1} -model. However, the existence of minimum β_n -models is problematic, to say the least. Simpson [10, Corollary VIII.6.9] proves that there is no minimum β_1 -model. Shilleto [8] proves the existence of a minimum β_2 -model. Enderton and Friedman [2] prove the existence of minimum β_n -models, $n \ge 3$, assuming a basis property which follows from V = L but which is not provable in ZFC. We conjecture that the existence of a minimum β_n -model is not provable in ZFC, for $n \ge 3$. We have verified this conjecture for $n \ge 4$. Simpson's book [10, Sections VII.1–VII.7 and VIII.6] contains further results concerning minimum β_1 - and β_2 -models of specific subsystems of second order arithmetic, as well as β_n -models for $n \ge 3$. See also Remark 3.6 below.

In this paper we answer Engström's question affirmatively. We prove that, for each $n \ge 1$, there exists a β_n -model which is not a β_{n+1} -model (Corollary 3.7). Our

© 0000, Association for Symbolic Logic 0022-4812/00/0000-0000/\$1.00

Received December 16, 2003; revised February 16, 2004.

[†]Mummert's research was partially supported by a VIGRE graduate traineeship under NSF Grant DMS-9810759.

[‡]Simpson's research was partially supported by NSF Grant DMS-0070718.

proof is based on a β_n -model version of Gödel's Second Incompleteness Theorem (Theorem 2.1). We draw corollaries concerning β_n -models of specific true theories (Corollary 3.3, Remark 3.5). We also obtain a β_n -model version of Löb's Theorem (Theorem 2.3).

1.1. Preliminaries. Our results are formulated in terms of L_2 , the *language of sec*ond order arithmetic. L_2 has variables of two sorts: first order (number) variables, denoted *i*, *j*, *k*, *m*, *n*, ... and intended to range over ω , and second order (set) variables, denoted *X*, *Y*, *Z*, ... and intended to range over $P(\omega)$. The variables of both sorts are quantified. We also have addition, multiplication, equality, and order for numbers, denoted +, \cdot , =, <, as well as set membership, denoted \in . Recall that an ω -model is a nonempty subset of $P(\omega)$. For *M* an ω -model and Φ an L_2 -sentence with parameters from *M*, we define $M \models \Phi$ to mean that *M* satisfies Φ , i.e., Φ is true in the L_2 -model ($\omega, M, +, \cdot, =, <, \in$). If *S* is a set of L_2 -sentences, we define $M \models S$ to mean that $M \models \Phi$ for all $\Phi \in S$.

An L_2 -formula is said to be *arithmetical* if it contains no set quantifiers. An L_2 -formula is said to be Σ_n^1 if it is equivalent to a formula of the form

 $\exists X_1 \forall X_2 \exists X_3 \cdots X_n \Theta$

with *n* alternating set quantifiers, where Θ is arithmetical. An L_2 -formula is said to be Π_n^1 if its negation is Σ_n^1 . A β_n -model is an ω -model *M* such that, for all Σ_n^1 formulas $\Phi(X_1, \ldots, X_k)$ with exactly the free variables displayed, and for all $A_1, \ldots, A_k \in M$,

$$P(\omega) \models \Phi(A_1, \dots, A_k) \quad \Leftrightarrow \quad M \models \Phi(A_1, \dots, A_k).$$

If X is a subset of ω , then X can be viewed as coding a countable ω -model $\{(X)_i : i \in \omega\}$, where $(X)_i = \{j : 2^i 3^j \in X\}$. Moreover, every countable ω -model can be coded in this way. Therefore we define a *countable coded* ω -model to be simply a subset of ω . A *countable coded* β_n -model is then a countable coded ω -model X such that $\{(X)_i : i \in \omega\}$ is a β_n -model.

§2. A β_n -model version of Gödel's Theorem. We now present the main theorem of this paper. Our theorem is a β_n -model version of Gödel's Second Incompleteness Theorem [6]. It was inspired by the ω -model version, due to Friedman [4, Chapter II], as expounded in Simpson [10, Theorem VIII.5.6]. See also Steel [11] and Friedman [5].

THEOREM 2.1. Let S be a recursively axiomatized theory in the language of second order arithmetic. For each $n \ge 1$, if there exists a β_n -model of S, then there exists a β_n -model of S + "there is no countable coded β_n -model of S."

PROOF. We use the subsystem ACA_0^+ of second order arithmetic. The axioms of ACA_0^+ consist of the basic axioms, induction, arithmetical comprehension, and "for every set X, the ω th Turing jump of X exists." See Blass/Hirst/Simpson [1] and Simpson [10, Definition X.3.2]. Note that every β_n -model automatically satisfies ACA_0^+ . Furthermore, ACA_0^+ proves that for every countable coded ω -model there exists a full satisfaction predicate. This allows us to write L_2 -formulas which assert certain properties of countable coded ω -model. Let $B_n(X)$ be the L_2 -formula asserting that X is a countable coded β_n -model. Let Sat(X, S) be the L_2 -formula

2

asserting that $X \models S$, i.e., the countable ω -model $\{(X)_i : i \in \omega\}$ satisfies Φ for all $\Phi \in S$. For brevity we introduce the L_2 -formula

$$\mathbf{B}_n(X,S) \equiv \mathbf{B}_n(X) \wedge \operatorname{Sat}(X,S)$$

asserting that X is a countable coded β_n -model of S.

Consider the L₂-theory T consisting of $ACA_0^+ + \Phi_1 + \Phi_2$, where

$$\Phi_1 \equiv \exists X \operatorname{B}_n(X, S) , \Phi_2 \equiv \forall Y \left(\operatorname{B}_n(Y, S) \Rightarrow Y \models \exists Z \operatorname{B}_n(Z, S) \right) .$$

We claim that *T* proves Con(T), the standard L_2 -sentence asserting consistency of *T*. To see this, we reason within *T*. By Φ_1 there exists *X* such that $B_n(X, S)$ holds. We claim that *X* satisfies *T*. Being a β_n -model, *X* satisfies ACA_0^+ . Furthermore, in light of Φ_2 , *X* satisfies Φ_1 . It remains to show that *X* satisfies Φ_2 . For this, let $Y = (X)_i$ be such that *X* satisfies $B_n(Y,S)$. Then $B_n(Y,S)$ is true, because a β_n -submodel of a β_n -model is a β_n -model. Hence by Φ_2 we have $Y \models \exists Z B_n(Z,S)$. We conclude that $X \models \Phi_2$. We have now shown that *X* is a model of *T*. Thus *T* is consistent. Our claim is proved.

We have shown that T proves Con(T). From this plus Gödel's Second Incompleteness Theorem [6], it follows that T is inconsistent. In other words, $\Phi_1 \Rightarrow \neg \Phi_2$ is provable in ACA₀⁺. Since ACA₀⁺ is true, $\Phi_1 \Rightarrow \neg \Phi_2$ is true.

To prove Theorem 2.1, assume the existence of a β_n -model of S. By the Löwenheim/Skolem Theorem, there exists a countable coded β_n -model of S. In other words, Φ_1 holds. Therefore, $\neg \Phi_2$ holds, i.e., there exists a β_n -model of S which does not contain a countable coded β_n -model of S. This completes the proof of Theorem 2.1.

REMARK 2.2. In proving Theorem 2.1, we have actually proved more. Namely, we have proved that Theorem 2.1 is provable in ACA_0^+ . Actually we could replace ACA_0^+ throughout this paper by the weaker theory $ACA_0^* = ACA_0 + \forall n \forall X$ (the *n*th Turing jump of X exists).

Our β_n -model version of Löb's Theorem [7] is as follows.

THEOREM 2.3. Let S be a recursively axiomatized L_2 -theory. Let Φ be an L_2 -sentence. For each $n \ge 1$, if every β_n -model of S satisfies

"every countable coded β_n -model of S satisfies Φ " $\Rightarrow \Phi$,

then every β_n -model of S satisfies Φ .

PROOF. This is a reformulation of Theorem 2.1 with S replaced by $S + \neg \Phi$. \dashv

§3. Some corollaries of Theorem 2.1. In this section we draw corollaries concerning β_n -models which are not β_{n+1} -models. In order to do so, we need the following lemmas, which are well known.

LEMMA 3.1. For each $n \ge 1$, the formula $B_n(X, S)$ is equivalent to a Π_n^1 formula. The equivalence is provable in ACA₀⁺.

PROOF. Note that an ω -model M is a β_n -model if and only if

 $\forall e \ \forall \ Y, Z \in M \ (\Psi_n(e, \ Y, Z) \Rightarrow M \models \Psi_n(e, \ Y, Z)),$

where $\Psi_n(e, X, Y)$ is a universal Σ_n^1 formula. (The existence of such a formula is provable in ACA₀⁺, or actually in ACA₀. See Simpson [10, Lemma V.1.4 and pages 252, 306, 333].) Applying this observation to the countable ω -model $M = \{(X)_i : i \in \omega\}$ coded by X, we have in ACA₀⁺ that B_n(X) holds if and only if

 $\forall e \; \forall i \; \forall j \; (\Psi_n(e,(X)_i,(X)_j) \Rightarrow X \models \Psi_n(e,(X)_i,(X)_j)).$

Thus $B_n(X)$ is Π_n^1 . Furthermore, ACA_0^+ proves the existence of a full satisfaction predicate for X which is implicitly defined by an arithmetical formula. Thus Sat(X, S) is both Σ_1^1 and Π_1^1 . We now see that $B_n(X, S)$ is Π_n^1 .

LEMMA 3.2. Let *S* be a recursively axiomatized L_2 -theory. Assume the existence of a β_n -model of *S*. Let *M* be an ω -model of ACA⁺₀ + "there is no countable coded β_n -model of *S*." Then *M* is not a β_{n+1} -model.

PROOF. Lemma 3.1 implies that the sentence $\exists X B_n(X, S) \text{ is } \Sigma_{n+1}^1$. Our hypotheses imply that this sentence holds in $P(\omega)$ but not in M. Thus M is not a β_{n+1} -model.

We now present our corollaries.

COROLLARY 3.3. Let S be a recursively axiomatized L_2 -theory. For each $n \ge 1$, if there exists a β_n -model of S, then there exists a β_n -model of S + "there is no countable coded β_n -model of S." Such a β_n -model is not a β_{n+1} -model.

PROOF. This is immediate from Theorem 2.1 and Lemma 3.2, noting that any β_n -model satisfies ACA₀⁺.

COROLLARY 3.4. Let S be a recursively axiomatized L_2 -theory which is true, i.e., which holds in $P(\omega)$. Then for each $n \ge 1$ there exists a β_n -model of S + "there is no countable coded β_n -model of S." Such a β_n -model is not a β_{n+1} -model.

PROOF. This is immediate from Corollary 3.3, since $P(\omega)$ is a β_n -model.

 \neg

 \dashv

REMARK 3.5. In Corollary 3.4, S can be any true recursively axiomatized L_2 -theory. For example, we may take S to be any of the following specific L_2 -theories, which have been discussed in Simpson [10]: Π_m^1 comprehension, Π_m^1 transfinite recursion, Σ_m^1 choice, Σ_m^1 dependent choice, strong Σ_m^1 dependent choice, $m \ge 1$, or any union of these, e.g., Π_∞^1 comprehension, Σ_∞^1 choice, Σ_∞^1 dependent choice. Note that Π_∞^1 comprehension is full second order arithmetic, called Z_2 in [10].

REMARK 3.6. Let S be any of the specific L_2 -theories mentioned in Remark 3.5, except Σ_1^1 choice and Σ_1^1 dependent choice. By a *minimum* β_n -model of S we mean a β_n -model of S which is included in all β_n -models of S. For n = 1, 2 a minimum β_n model of S can be obtained by methods of Simpson [10, Chap. VII] and Shilleto [8] respectively. For $n \ge 3$ a minimum β_n -model of S can be obtained by methods of Simpson [10, Chap. VII] and Enderton/Friedman [2] assuming V = L.

We answer Engström's question [3] affirmatively as follows.

COROLLARY 3.7. For each $n \ge 1$ there exists a β_n -model which is not a β_{n+1} -model.

PROOF. In Corollary 3.4 let S be the trivial L_2 -theory with no axioms.

Remark 3.8. Corollary 3.7 follows from the results of Enderton/Friedman [2] assuming V = L. We do not know of any proof of Corollary 3.7 in ZFC, other than the proof which we have given here.

REFERENCES

[1] ANDREAS R. BLASS, JEFFRY L. HIRST, and STEPHEN G. SIMPSON, Logical analysis of some theorems of combinatorics and topological dynamics, in [9], 1987, pp. 125–156.

[2] HERBERT B. ENDERTON and HARVEY FRIEDMAN, Approximating the standard model of analysis, Fundamenta Mathematicae, vol. 72 (1971), no. 2, pp. 175–188.

[3] FREDRIK ENGSTRÖM, October 2003, Private communication.

[4] HARVEY FRIEDMAN, Subsystems of Set Theory and Analysis, Ph.D. thesis, Massachusetts Institute of Technology, 1967.

[5] , Uniformly defined descending sequences of degrees, this JOURNAL, vol. 41 (1976), pp. 363–367.

[6] KURT GÖDEL, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–198.

[7] M. H. LÖB, Solution of a problem of Leon Henkin, this JOURNAL, vol. 20 (1955), pp. 115–118.

[8] J. R. SHILLETO, Minimum models of analysis, this JOURNAL, vol. 37 (1972), pp. 48-54.

[9] S. G. Simpson (editor), *Logic and Combinatorics*, Contemporary Mathematics, American Mathematical Society, 1987.

[10] STEPHEN G. SIMPSON, *Subsystems of Second Order Arithmetic*, Perspectives in Mathematical Logic, Springer-Verlag, 1999.

[11] JOHN R. STEEL, Descending sequences of degrees, this JOURNAL, vol. 40 (1975), pp. 59-61.

DEPARTMENT OF MATHEMATICS PENNSYLVANIA STATE UNIVERSITY STATE COLLEGE, PA 16802, USA

URL: http://www.math.psu.edu/mummert/ E-mail: cnm120@psu.edu

URL: http://www.math.psu.edu/simpson/ E-mail: simpson@math.psu.edu