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AN INCOMPLETENESS THEOREM FOR f,-MODELS
CARL MUMMERT! AND STEPHEN G. SIMPSON?

Abstract. Let n be a positive integer. By a f8,-model we mean an w-model which is elementary with
respect to ZL formulas. We prove the following f3,-model version of Gddel’s Second Incompleteness
Theorem. For any recursively axiomatized theory S in the language of second order arithmetic, if there
exists a ff,-model of S, then there exists a f§,-model of S + “there is no countable f,-model of S”. We
also prove a f,-model version of Lob’s Theorem. As a corollary, we obtain a f,-model which is not a
Pur1-model.

§1. Introduction. Let w denote the set of natural numbers {0, 1,2, ...}. Let P(w)
denote the set of all subsets of w. An w-model is a nonempty set M C P(w), viewed
as a model for the language of second order arithmetic. Here the number variables
range over ®, the set variables range over M, and the arithmetical operations are
standard. For n a positive integer, a f3,-model is an w-model which is an elementary
submodel of P(w) with respect to X! formulas of the language of second order
arithmetic.

Recently Engstrom [3] posed the following question: Does there exist a f5,,-model
which is not a f8,,;1-model? To our amazement, there seems to be no answer to this
question in the literature.

Previous research has focused on minimum f,-models. A minimum f3,-model is
a f§,-model which is included in all ,-models. If a minimum f,-model exists, then
obviously it is unique, and it is not a f,,;-model. However, the existence of mini-
mum f,-models is problematic, to say the least. Simpson [10, Corollary VIII.6.9]
proves that there is no minimum f;-model. Shilleto [8] proves the existence of a
minimum f,-model. Enderton and Friedman [2] prove the existence of minimum
By-models, n > 3, assuming a basis property which follows from V = L but which
is not provable in ZFC. We conjecture that the existence of a minimum f,,-model is
not provable in ZFC, for n > 3. We have verified this conjecture for n > 4. Simp-
son’s book [10, Sections VII.1-VII.7 and VIII.6] contains further results concerning
minimum f;- and f>-models of specific subsystems of second order arithmetic, as
well as ff,-models for n > 3. See also Remark 3.6 below.

In this paper we answer Engstrom’s question affirmatively. We prove that, for
each n > 1, there exists a 8,-model which is not a 8, ;-model (Corollary 3.7). Our
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proof is based on a f,-model version of Godel’s Second Incompleteness Theorem
(Theorem 2.1). We draw corollaries concerning f,-models of specific true theories
(Corollary 3.3, Remark 3.5). We also obtain a 8,-model version of Lob’s Theorem
(Theorem 2.3).

1.1. Preliminaries. Our results are formulated in terms of L,, the language of sec-
ond order arithmetic. L, has variables of two sorts: first order (number) variables,
denoted i, j, k., m. n, ... and intended to range over w, and second order (set) vari-
ables, denoted X, Y, Z, ... and intended to range over P(w). The variables of both
sorts are quantified. We also have addition, multiplication, equality, and order for
numbers, denoted +, -, =, <, as well as set membership, denoted €. Recall that an
w-model is a nonempty subset of P(w). For M an w-model and ® an L,-sentence
with parameters from M, we define M = ® to mean that M satisfies @, i.e., @ is
true in the Lr-model (w, M, +,-, =, <,€). If S is a set of L,-sentences, we define
M = S tomean that M = ® forall ® € S.

An L,-formula is said to be arithmetical if it contains no set quantifiers. An
L,-formula is said to be X! if it is equivalent to a formula of the form

IX\VX3X; - X, ©

with n alternating set quantifiers, where ® is arithmetical. An L,-formula is said
to be 1} if its negation is T.. A B,-model is an w-model M such that, for all
2! formulas ®(X;. ..., X;) with exactly the free variables displayed, and for all
Ar,... ,Ak c M,

P(w)ICCD(Al,...,Ak) = MIC(I)(Al,...,Ak).

If X is a subset of w, then X can be viewed as coding a countable w-model
{(X); :i € w}, where (X); = {j : 2'3/ € X}. Moreover, every countable w-
model can be coded in this way. Therefore we define a countable coded w-model
to be simply a subset of w. A countable coded f,-model is then a countable coded
w-model X such that {(X),; :i € w} is a f§,-model.

82. A f5,-model version of Godel’s Theorem. We now present the main theorem
of this paper. Our theorem is a f§,-model version of Godel’s Second Incompleteness
Theorem [6]. It was inspired by the w-model version, due to Friedman [4, Chapter
II]. as expounded in Simpson [10, Theorem VIII.5.6]. See also Steel [11] and
Friedman [35].

THEOREM 2.1. Let S be a recursively axiomatized theory in the language of second
order arithmetic. For each n > 1, if there exists a f,-model of S, then there exists a
Pu-model of S + “there is no countable coded p,-model of S.”

PrROOF. We use the subsystem ACA| of second order arithmetic. The axioms of
ACA; consist of the basic axioms, induction, arithmetical comprehension, and “for
every set X, the wth Turing jump of X exists.” See Blass/Hirst/Simpson [1] and
Simpson [10, Definition X.3.2]. Note that every f,-model automatically satisfies
ACA;. Furthermore, ACA; proves that for every countable coded w-model there
exists a full satisfaction predicate. This allows us to write L,-formulas which assert
certain properties of countable coded w-models. Let B,(X) be the L,-formula
asserting that X is a countable coded f,-model. Let Sat(X,S) be the L,-formula
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asserting that X |= S, i.e., the countable w-model {(X); : i € w} satisfies @ for all
® € S. For brevity we introduce the L,-formula

B,(X.S) = B,(X) A Sat(X.S)

asserting that X is a countable coded f,-model of S.
Consider the L;-theory T consisting of ACA& + ®; + ®,, where

®, = 3XB,(X.S).
O, =VY (B,(Y.S)= Y = 3ZB,(Z.5)).

We claim that T proves Con(T), the standard L,-sentence asserting consistency of
T. To see this, we reason within 7. By @, there exists X such that B, (X, S) holds.
We claim that X satisfies 7. Being a f,-model, X satisfies ACAJ . Furthermore,
in light of ®,, X satisfies @;. It remains to show that X satisfies ®,. For this,
let Y = (X); be such that X satisfies B,(Y,.S). Then B,(Y,S) is true, because a
B.-submodel of a f,-model is a 8,-model. Hence by @, we have Y = 3Z B,(Z. S).
We conclude that X |= ®@,. We have now shown that X is a model of 7. Thus T is
consistent. Our claim is proved.

We have shown that T proves Con(T'). From this plus Godel’s Second Incom-
pleteness Theorem [6], it follows that 7" is inconsistent. In other words, ®; = — ®,
is provable in ACA . Since ACA{ is true, ®@; = — @, is true.

To prove Theorem 2.1, assume the existence of a f§,-model of S. By the
Lowenheim/Skolem Theorem, there exists a countable coded f,-model of S. In
other words, ®@; holds. Therefore, = ®, holds, i.e., there exists a f§,-model of S
which does not contain a countable coded f5,-model of S. This completes the proof
of Theorem 2.1. -

REMARK 2.2. In proving Theorem 2.1, we have actually proved more. Namely,
we have proved that Theorem 2.1 is provable in ACA;. Actually we could replace
ACA{ throughout this paper by the weaker theory ACAj; = ACA( + Vn VX (the nth
Turing jump of X exists).

Our f,-model version of Lob’s Theorem [7] is as follows.

THEOREM 2.3. Let S be a recursively axiomatized L,-theory. Let ® be an L,-
sentence. For each n > 1, if every f,-model of S satisfies

“every countable coded f,-model of S satisfies ®” = O,
then every f,-model of S satisfies @.
Proor. This is a reformulation of Theorem 2.1 with S replaced by S + - ®. -

§3. Some corollaries of Theorem 2.1. In this section we draw corollaries concern-
ing f,-models which are not S, -models. In order to do so, we need the following
lemmas, which are well known.

LemMA 3.1. For each n > 1, the formula B, (X, S) is equivalent to a 1'[,‘1 formula.
The equivalence is provable in ACA .

ProOF. Note that an w-model M is a f§,-model if and only if
VeVYZeM ¥,(e. Y .Z)= M Y, (e. Y. Z)),
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where W, (e, X, Y) is a universal £} formula. (The existence of such a formula
is provable in ACA{, or actually in ACAy. See Simpson [10, Lemma V.1.4 and
pages 252, 306, 333].) Applying this observation to the countable w-model M =
{(X); : i € w} coded by X. we have in ACA] that B, (X) holds if and only if
VeViVj (Wle. (X)i. (X);) = X | Wyl (X)i. (X))
Thus B,(X) is TI}. Furthermore, ACA{ proves the existence of a full satisfac-
tion predicate for X which is implicitly defined by an arithmetical formula. Thus
Sat(X, S) is both =} and IT}. We now see that B, (X, S) is T1}. -
LEmMA 3.2. Let S be a recursively axiomatized Ly-theory. Assume the existence
of a By-model of S. Let M be an w-model of ACA; + “there is no countable coded
Bu-model of S.” Then M is not a f,.1-model.

PrOOF. Lemma 3.1implies that the sentence 3X B, (X. S)isX), . Our hypotheses
imply that this sentence holds in P(w) but not in M. Thus M is not a B,.1-
model. -

We now present our corollaries.

COROLLARY 3.3. Let S be a recursively axiomatized L,-theory. For each n > 1,
if there exists a f,-model of S, then there exists a f§,-model of S + “there is no
countable coded f,-model of S.” Such a f,-model is not a £, ;-model.

Proor. This is immediate from Theorem 2.1 and Lemma 3.2, noting that any
B.-model satisfies ACA . 4

COROLLARY 3.4. Let S be a recursively axiomatized L,-theory which is true, i.e.,
which holds in P(w). Then for each n > 1 there exists a 8,-model of S + “there is
no countable coded f,-model of S.” Such a f§,-model is not a f§,;-model.

ProOF. This is immediate from Corollary 3.3, since P(w) is a 8,-model. -

REMARK 3.5. In Corollary 3.4, S can be any true recursively axiomatized L;-
theory. For example, we may take S to be any of the following specific L,-theories,
which have been discussed in Simpson [10]: T1}, comprehension, I}, transfinite
recursion, X} choice, ! dependent choice, strong X!, dependent choice, m > 1,
or any union of these, e.g.. [T\ comprehension, £._ choice, £!_ dependent choice.
Note that I} comprehension is full second order arithmetic, called Z; in [10].

REMARK 3.6. Let S be any of the specific L,-theories mentioned in Remark 3.5,
except X! choice and ! dependent choice. By a minimum f,-model of S we mean a
PBn-model of S which is included in all §,-models of S. For n = 1,2 a minimum f,-
model of S can be obtained by methods of Simpson [10, Chap. VII] and Shilleto [8]
respectively. For n > 3 a minimum f,-model of S can be obtained by methods of
Simpson [10, Chap. VII] and Enderton/Friedman [2] assuming V = L.

We answer Engstrom’s question [3] affirmatively as follows.

CoROLLARY 3.7. For each n > 1 there exists a f,-model which is not a f,,1-
model.

ProoF. In Corollary 3.4 let S be the trivial L,-theory with no axioms. =

REMARK 3.8. Corollary 3.7 follows from the results of Enderton/Friedman [2]
assuming V = L. We do not know of any proof of Corollary 3.7 in ZFC, other than
the proof which we have given here.
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