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AN INCOMPLETENESS THEOREM FOR ân-MODELS

CARL MUMMERT† AND STEPHEN G. SIMPSON‡

Abstract. Let n be a positive integer. By a ân -model we mean an ù-model which is elementary with

respect to Σ1n formulas. We prove the following ân -model version of Gödel’s Second Incompleteness

Theorem. For any recursively axiomatized theory S in the language of second order arithmetic, if there

exists a ân-model of S, then there exists a ân-model of S + “there is no countable ân-model of S”. We

also prove a ân -model version of Löb’s Theorem. As a corollary, we obtain a ân -model which is not a

ân+1-model.

§1. Introduction. Letù denote the set of natural numbers {0, 1, 2, . . . }. LetP(ù)
denote the set of all subsets ofù. Anù-model is a nonempty setM ⊆ P(ù), viewed
as a model for the language of second order arithmetic. Here the number variables
range over ù, the set variables range over M , and the arithmetical operations are
standard. For n a positive integer, a ân-model is anù-model which is an elementary
submodel of P(ù) with respect to Σ1n formulas of the language of second order
arithmetic.
Recently Engström [3] posed the following question: Does there exist a ân-model
which is not a ân+1-model? To our amazement, there seems to be no answer to this
question in the literature.
Previous research has focused on minimum ân-models. A minimum ân-model is
a ân-model which is included in all ân-models. If a minimum ân-model exists, then
obviously it is unique, and it is not a ân+1-model. However, the existence of mini-
mum ân-models is problematic, to say the least. Simpson [10, Corollary VIII.6.9]
proves that there is no minimum â1-model. Shilleto [8] proves the existence of a
minimum â2-model. Enderton and Friedman [2] prove the existence of minimum
ân-models, n ≥ 3, assuming a basis property which follows from V = L but which
is not provable in ZFC. We conjecture that the existence of a minimum ân-model is
not provable in ZFC, for n ≥ 3. We have verified this conjecture for n ≥ 4. Simp-
son’s book [10, Sections VII.1–VII.7 andVIII.6] contains further results concerning
minimum â1- and â2-models of specific subsystems of second order arithmetic, as
well as ân-models for n ≥ 3. See also Remark 3.6 below.
In this paper we answer Engström’s question affirmatively. We prove that, for
each n ≥ 1, there exists a ân-model which is not a ân+1-model (Corollary 3.7). Our
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proof is based on a ân-model version of Gödel’s Second Incompleteness Theorem
(Theorem 2.1). We draw corollaries concerning ân-models of specific true theories
(Corollary 3.3, Remark 3.5). We also obtain a ân-model version of Löb’s Theorem
(Theorem 2.3).

1.1. Preliminaries. Our results are formulated in terms ofL2, the language of sec-
ond order arithmetic. L2 has variables of two sorts: first order (number) variables,
denoted i, j, k,m, n, . . . and intended to range over ù, and second order (set) vari-
ables, denoted X,Y,Z, . . . and intended to range over P(ù). The variables of both
sorts are quantified. We also have addition, multiplication, equality, and order for
numbers, denoted +, ·,=, <, as well as set membership, denoted ∈. Recall that an
ù-model is a nonempty subset of P(ù). ForM an ù-model and Φ an L2-sentence
with parameters fromM , we defineM |= Φ to mean thatM satisfies Φ, i.e., Φ is
true in the L2-model (ù,M,+, ·,=, <,∈). If S is a set of L2-sentences, we define
M |= S to mean thatM |= Φ for all Φ ∈ S.
An L2-formula is said to be arithmetical if it contains no set quantifiers. An
L2-formula is said to be Σ1n if it is equivalent to a formula of the form

∃X1∀X2∃X3 · · ·Xn Θ

with n alternating set quantifiers, where Θ is arithmetical. An L2-formula is said
to be Π1n if its negation is Σ

1
n . A ân-model is an ù-model M such that, for all

Σ1n formulas Φ(X1, . . . , Xk) with exactly the free variables displayed, and for all
A1, . . . , Ak ∈M ,

P(ù) |= Φ(A1, . . . , Ak) ⇔ M |= Φ(A1, . . . , Ak).

If X is a subset of ù, then X can be viewed as coding a countable ù-model
{(X )i : i ∈ ù}, where (X )i = {j : 2i3j ∈ X}. Moreover, every countable ù-
model can be coded in this way. Therefore we define a countable coded ù-model
to be simply a subset of ù. A countable coded ân-model is then a countable coded
ù-model X such that {(X )i : i ∈ ù} is a ân-model.

§2. A ân-model version of Gödel’s Theorem. We now present the main theorem
of this paper. Our theorem is a ân-model version of Gödel’s Second Incompleteness
Theorem [6]. It was inspired by the ù-model version, due to Friedman [4, Chapter
II], as expounded in Simpson [10, Theorem VIII.5.6]. See also Steel [11] and
Friedman [5].

Theorem 2.1. Let S be a recursively axiomatized theory in the language of second

order arithmetic. For each n ≥ 1, if there exists a ân-model of S, then there exists a
ân-model of S + “there is no countable coded ân-model of S.”

Proof. We use the subsystem ACA
+
0 of second order arithmetic. The axioms of

ACA
+
0 consist of the basic axioms, induction, arithmetical comprehension, and “for

every set X , the ùth Turing jump of X exists.” See Blass/Hirst/Simpson [1] and
Simpson [10, Definition X.3.2]. Note that every ân-model automatically satisfies
ACA

+
0 . Furthermore, ACA

+
0 proves that for every countable coded ù-model there

exists a full satisfaction predicate. This allows us to write L2-formulas which assert
certain properties of countable coded ù-models. Let Bn(X ) be the L2-formula
asserting that X is a countable coded ân-model. Let Sat(X,S) be the L2-formula
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asserting that X |= S, i.e., the countable ù-model {(X )i : i ∈ ù} satisfies Φ for all
Φ ∈ S. For brevity we introduce the L2-formula

Bn(X,S) ≡ Bn(X ) ∧ Sat(X,S)

asserting that X is a countable coded ân-model of S.
Consider the L2-theory T consisting of ACA

+
0 +Φ1 +Φ2, where

Φ1 ≡ ∃X Bn(X,S) ,

Φ2 ≡ ∀Y (Bn(Y,S)⇒ Y |= ∃Z Bn(Z,S)) .

We claim that T proves Con(T ), the standard L2-sentence asserting consistency of
T . To see this, we reason within T . By Φ1 there exists X such that Bn(X,S) holds.
We claim that X satisfies T . Being a ân-model, X satisfies ACA

+
0 . Furthermore,

in light of Φ2, X satisfies Φ1. It remains to show that X satisfies Φ2. For this,
let Y = (X )i be such that X satisfies Bn(Y,S). Then Bn(Y,S) is true, because a
ân-submodel of a ân-model is a ân-model. Hence by Φ2 we haveY |= ∃Z Bn(Z,S).
We conclude that X |= Φ2. We have now shown that X is a model of T . Thus T is
consistent. Our claim is proved.
We have shown that T proves Con(T ). From this plus Gödel’s Second Incom-
pleteness Theorem [6], it follows that T is inconsistent. In other words, Φ1 ⇒ ¬Φ2
is provable in ACA

+
0 . Since ACA

+
0 is true, Φ1 ⇒ ¬Φ2 is true.

To prove Theorem 2.1, assume the existence of a ân-model of S. By the
Löwenheim/Skolem Theorem, there exists a countable coded ân-model of S. In
other words, Φ1 holds. Therefore, ¬Φ2 holds, i.e., there exists a ân-model of S
which does not contain a countable coded ân-model of S. This completes the proof
of Theorem 2.1. ⊣

Remark 2.2. In proving Theorem 2.1, we have actually proved more. Namely,
we have proved that Theorem 2.1 is provable in ACA

+
0 . Actually we could replace

ACA
+
0 throughout this paper by the weaker theory ACA

∗

0 = ACA0 + ∀n ∀X (the nth
Turing jump of X exists).

Our ân-model version of Löb’s Theorem [7] is as follows.

Theorem 2.3. Let S be a recursively axiomatized L2-theory. Let Φ be an L2-
sentence. For each n ≥ 1, if every ân-model of S satisfies

“every countable coded ân-model of S satisfies Φ” ⇒ Φ,

then every ân-model of S satisfies Φ.

Proof. This is a reformulation of Theorem 2.1 with S replaced by S + ¬Φ. ⊣

§3. Some corollaries of Theorem 2.1. In this section we draw corollaries concern-
ing ân-models which are not ân+1-models. In order to do so, we need the following
lemmas, which are well known.

Lemma 3.1. For each n ≥ 1, the formula Bn(X,S) is equivalent to a Π1n formula.
The equivalence is provable in ACA

+
0 .

Proof. Note that an ù-modelM is a ân-model if and only if

∀e ∀Y,Z ∈M (Ψn(e, Y,Z)⇒M |= Ψn(e, Y,Z)),
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where Ψn(e,X,Y ) is a universal Σ1n formula. (The existence of such a formula
is provable in ACA

+
0 , or actually in ACA0. See Simpson [10, Lemma V.1.4 and

pages 252, 306, 333].) Applying this observation to the countable ù-model M =
{(X )i : i ∈ ù} coded by X , we have in ACA

+
0 that Bn(X ) holds if and only if

∀e ∀i ∀j (Ψn(e, (X )i , (X )j)⇒ X |= Ψn(e, (X )i , (X )j)).

Thus Bn(X ) is Π1n. Furthermore, ACA
+
0 proves the existence of a full satisfac-

tion predicate for X which is implicitly defined by an arithmetical formula. Thus
Sat(X,S) is both Σ11 and Π

1
1. We now see that Bn(X,S) is Π

1
n. ⊣

Lemma 3.2. Let S be a recursively axiomatized L2-theory. Assume the existence

of a ân-model of S. Let M be an ù-model of ACA
+
0 + “there is no countable coded

ân-model of S.” ThenM is not a ân+1-model.

Proof. Lemma3.1 implies that the sentence∃X Bn(X,S) is Σ1n+1. Our hypotheses
imply that this sentence holds in P(ù) but not in M . Thus M is not a ân+1-
model. ⊣

We now present our corollaries.

Corollary 3.3. Let S be a recursively axiomatized L2-theory. For each n ≥ 1,
if there exists a ân-model of S, then there exists a ân-model of S + “there is no
countable coded ân-model of S.” Such a ân-model is not a ân+1-model.

Proof. This is immediate from Theorem 2.1 and Lemma 3.2, noting that any
ân-model satisfies ACA

+
0 . ⊣

Corollary 3.4. Let S be a recursively axiomatized L2-theory which is true, i.e.,
which holds in P(ù). Then for each n ≥ 1 there exists a ân-model of S + “there is
no countable coded ân-model of S.” Such a ân-model is not a ân+1-model.

Proof. This is immediate from Corollary 3.3, since P(ù) is a ân-model. ⊣

Remark 3.5. In Corollary 3.4, S can be any true recursively axiomatized L2-
theory. For example, we may take S to be any of the following specific L2-theories,
which have been discussed in Simpson [10]: Π1m comprehension, Π

1
m transfinite

recursion, Σ1m choice, Σ
1
m dependent choice, strong Σ

1
m dependent choice, m ≥ 1,

or any union of these, e.g., Π1
∞
comprehension, Σ1

∞
choice, Σ1

∞
dependent choice.

Note that Π1
∞
comprehension is full second order arithmetic, called Z2 in [10].

Remark 3.6. Let S be any of the specific L2-theories mentioned in Remark 3.5,
except Σ11 choice and Σ

1
1 dependent choice. By a minimum ân-model of S we mean a

ân-model of S which is included in all ân-models of S. For n = 1, 2 a minimum ân-
model of S can be obtained by methods of Simpson [10, Chap. VII] and Shilleto [8]
respectively. For n ≥ 3 a minimum ân-model of S can be obtained by methods of
Simpson [10, Chap. VII] and Enderton/Friedman [2] assuming V = L.

We answer Engström’s question [3] affirmatively as follows.

Corollary 3.7. For each n ≥ 1 there exists a ân-model which is not a ân+1-
model.

Proof. In Corollary 3.4 let S be the trivial L2-theory with no axioms. ⊣

Remark 3.8. Corollary 3.7 follows from the results of Enderton/Friedman [2]
assuming V = L. We do not know of any proof of Corollary 3.7 in ZFC, other than
the proof which we have given here.
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