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Abstract

We study the Lindenbaum algebra A(WKL0,RCA0) of sentences in
the language of second-order arithmetic which imply RCA0 and are
provable from WKL0. We explore the relationship between Σ1

1 sen-
tences in A(WKL0,RCA0) and Π0

1 classes of subsets of ω. By applying
a result of Binns and Simpson (Arch. Math. Logic, 2004) about Π0

1

classes, we give a specific embedding of the free distributive lattice
with countably many generators into A(WKL0,RCA0).

1 Introduction

In this paper, we consider the algebra A(WKL0,RCA0) of finitely axiom-
atizable subsystems of second-order arithmetic between WKL0 and RCA0.
These subsystems can be naturally identified with a sublattice of the Lin-
denbaum algebra of sentences of second-order arithmetic. We give a specific
embedding of the free distributive lattice on countably many generators into
these subsystems. The central lemma for this embedding result comes from
a result of Binns and Simpson [2] on the lattice of Muchnik degrees of Π0

1

classes.
One motivation for choosing the systems WKL0 and RCA0 is that WKL0 is

conservative over RCA0 for Π1
1 sentences. It will be seen that the statements

appearing in the results are of a purely mathematical character. Simpson [7]
has shown that, despite conservativity, it is possible to use Π0

1 statements
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arising from Gödel’s incompleteness theorems to construct subsystems be-
tween WKL0 and RCA0; see Remark 3.5. Moreover, incompletness results
imply that A(WKL0,RCA0) is atomless, as described below.

We consider second-order arithmetic in the language L2 = 〈0, 1,+,×,=,
<,∈〉. The subsystem RCA0 includes the first-order axioms of Peano arith-
metic without induction, comprehension for ∆0

1 formulas with parameters,
and induction for Σ0

1 formulas with parameters. The subsystem WKL0 is
RCA0 plus weak König’s lemma, which says that any subtree of 2<N is ei-
ther finite or has a path. A thorough description of these systems is given
by Simpson [6].

We let A denote the Lindenbaum algebra of (equivalence classes of) L2

sentences without parameters. Two sentences φ and ψ are equivalent if
` φ⇔ ψ. The order on A is defined so that φ ≤ ψ if and only if ψ ` φ; this
order clearly respects the equivalence relation. It is well known that A is a
Boolean algebra with operations sup([φ], [ψ]) = [φ ∧ ψ] and inf([φ], [ψ]) =
[φ∨ψ]. The monograph of Grätzer [3] gives additional information on lattice
theory.

For any L2 sentence φ we let φ∗ be the sentence φ∧ΘRCA0 , where ΘRCA0

is the canonical finite axiomatization of RCA0. We define

A(WKL0,RCA0) = {[φ∗] ∈ A | WKL0 ` φ∗}.

It is not difficult to see that an equivalence class [φ] is in A(WKL0,RCA0)
if and only if WKL0 ` φ and φ ` RCA0. Moreover, A(WKL0,RCA0) is a
Boolean algebra. The complement of a sentence φ is the sentence ΘRCA0 ∧
(¬φ∨ΘWKL0), where ΘWKL0 is the canonical finite axiomatization of WKL0.

The algebra A(WKL0,RCA0) is atomless, and is thus isomorphic to the
canonical countable atomless Boolean algebra. This follows from the fact
that an atom in the alegbra would also be an atom in the full Lindenbaum
algebraA(⊥,RCA0) of finitely axiomatized subsystems of second order arith-
metic above RCA0. The algebra A(⊥,RCA0) has no atoms because it has
no coatoms, which would be complete, consistent finitely axiomatized ex-
tensions of RCA0. These cannot exist in light of Gödel’s incompleteness
theorem.

There are several well-known subsystems of second-order arithmetic in
A(WKL0,RCA0). Simpson and Yu [8] introduced the system WWKL0, which
is closely related to the reverse mathematics of measure theory, and proved
that it is strictly between RCA0 and WKL0. Recently, Ambos-Spies et al. [1]
have shown that the subsystem DNR0 is strictly weaker than WWKL0; DNR0

is known to be stronger than RCA0.
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In this paper, we study the overall structure of A(WKL0,RCA0) rather
than studying specific named subsystems. In Section 2, we explore the rela-
tionship between Π0

1 classes and elements of A(WKL0,RCA0). In Section 3,
we give a natural embedding of the free distributive lattice on ω generators.

2 Π0
1 classes

In this section we explore the relationship between A(WKL0,RCA0) and the
nonempty Π0

1 subsets of 2ω. We identify each natural number e with a
computable (possibly empty) tree Te ⊆ 2<ω and the corresponding Π0

1 class
Qe ⊆ 2ω. It is clear that for each e there is a Σ1

1 sentence which says “Qe

is nonempty.” We let S(e) be the subsystem of second-order arithmetic
consisting of RCA0 plus the sentence that Qe is nonempty. For each e ∈ ω,
WKL0 will prove the sentence S(e) if and only if it proves that the tree Te

is infinite.

Remark 2.1. We will sometimes limit our consideration to those subsys-
tems S(e) that are provable from WKL0. This is not a vacuous restriction,
for Gödel’s incompleteness theorem implies that there is an e ∈ ω such that
both S(e) and WKL0 + ¬S(e) are consistent.

We will use the following notation relating to Medvedev and Muchnik
reducibility. Let P,Q be any nonempty Π0

1 classes. We write P ≤w Q if
every element of Q computes an element of P , and we write P ≤M Q if
there is a Turing functional F such that F [Q] ⊆ P . We write P ≡M Q
if P ≤M Q and Q ≤M P , and define ≡w similarly. Rogers [5], Binns and
Simpson [2], and Simpson [7] give more information about Medvedev (≤M )
and Muchnik (≤w) reducibility.

We formalize computability theory in (possibly nonstandard) models of
RCA0 by identifying Turing reducibility with relative ∆0

1 definability. This
identification is possible because there is a Σ0

1 formula that RCA0 proves
to be universal. Using this definition of Turing reducibility, we translate
the definitions of ≤M ,≤w,≡M ,≡w into RCA0. Additional comments on
this formalization of computability theory are given by Mytilinaios [4] and
Simpson [7].

Our first theorem illustrates the relationship between the order relation
on A(WKL0,RCA0) and provable Muchnik reducibility. In the proof, and
for the rest of this paper, if M is an L2 structure we write X ∈M to mean
that X is a set in the second-order part of M .
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Theorem 2.2. For any a, b ∈ ω, S(b) ` S(a) if and only if RCA0 ` Qa ≤w

Qb. Thus S(b) does not prove S(a) if Qa 6≤w Qb.

Proof. Suppose S(b) ` S(a). LetM be any model of S(b) and chooseX ∈M
such that M |= X ∈ Qb. Let M ′ ⊆ M consist of those sets Y ∈ M such
that M |= Y ≤T X. It is well known that M ′ will be a model of RCA0;
compare Theorem IX.1.8 of [6]. Moreover, M ′ |= X ∈ Qb, so M ′ |= S(b).
By assumption, there is a Z ∈ M ′ be such that M ′ |= Z ∈ Qa; clearly
M |= Z ≤T X. This shows M |= Qa ≤w Qb.

Now suppose RCA0 ` Qa ≤w Qb. Let M be any model of S(b) and let
M |= X ∈ Qb. Then by assumption there is a Y ∈ M such that M |= Y ∈
Qa ∧ Y ≤T X. We conclude M |= Qa, which shows S(b) ` S(a).

The previous theorem shows that Muchnik-incomparable Π0
1 classes yield

incomparable elements of A(WKL0,RCA0). The next theorem shows that
even Medvedev-equivalent Π0

1 classes may correspond to distinct elements
of A(WKL0,RCA0).

Theorem 2.3. Let Qa be a Π0
1 class such that WKL0 proves Qa is nonempty.

There is a Π0
1 class Qb such that Qa ≡M Qb but WKL0 0 Qb ≤w Qa. Thus

S(a) does not prove S(b).

Proof. Let φ(n,m) be a Σ0
1 formula such that for each n there is a unique

m with φ(n,m), but there is no primitive recursive function f such that
∀nφ(n, f(n)). Let g(n) be the function such that φ(n, g(n)) holds for all n.
For concreteness, we may assume g is the Ackerman function.

Fix a nonempty Π0
1 class Qa, with corresponding tree Ta, such that WKL0

proves Qa is nonempty. For each σ ∈ Ta, we define a sequence

σ∗ = 0g(0) 1σ0 0g(1) 1σ1 · · · 0g(k) 1σk

where |σ| = k + 1 and 0r denotes a sequence of r zeros (we let 〈〉∗ = 〈〉).
Define T ∗ = {τ | ∃σ ∈ T (τ ⊆ σ∗)}. It can be seen that T ∗ is a computable
subtree of 2<N and [T ∗] ≡M [T ]. Let b ∈ ω be an index such that such that
T ∗ = Tb. It is important that RCA0 proves that for each τ ∈ Tb there is a
σ ∈ T with τ ⊆ σ∗; this will be provable if the index b is chosen correctly.

To obtain a contradiction, assume WKL0 can prove Qb ≤w Qa. Thus,
since WKL0 proves Qa is nonempty, WKL0 proves Qb is nonempty. Using Σ0

1

induction relative to an element of Qb, WKL0 proves the Π0
2 sentence that

for all n there is an m such that g(n) = m.
The conclusion we reach in the previous paragraph is impossible, because

WKL0 is conservative over PRA for Π0
2 sentences and g is not primitive

recursive.
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3 Applications of a result of Binns and Simpson

In this section, we demonstrate an embedding of the free distributive lattice
on ω generators into A(WKL0,RCA0). We require the following theorem,
which is implicit in a paper of Binns and Simpson [2]. We sketch a proof
assuming the reader has access to the original paper. The notation

⊕
fi

denotes the Turing join of a sequence of functions 〈fi | i ∈ ω〉.

Theorem 3.1. Given any nonempty Π0
1 class P ⊆ 2ω with no computable

elements, there is an infinite computable sequence 〈Qi ⊆ 2ω | i ∈ ω〉 of Π0
1

classes with the following properties.

1. For any sequence 〈fi | i ∈ ω〉 such that fi ∈ Qi and any g ∈ P , g is
not Turing reducible to

⊕
fi.

2. For any sequence 〈fi | i ∈ ω, i 6= j〉 such that fi ∈ Qi and any f ∈ Qj ,
f is not Turing reducible to

⊕
fi.

Sketch of proof. Begin by letting Q be the Π0
1 class constructed in Theo-

rem 2.1 of [2]. Split Q into a sequence 〈Qi | i ∈ N〉 as in Theorem 3.1 of
that paper. The sequence 〈Qi〉 has the desired properties.

Theorem 3.2. The free distributive lattice with ω generators embeds into
A(WKL0,RCA0).

Proof. Let 〈Qi〉 be the sequence of Π0
1 classes constructed in Theorem 3.1

and let 〈e(i) | i ∈ N〉 be a computable sequence of indices such that Qi =
[Te(i)] for each i ∈ N. For each i ∈ ω let φi be the sentence “Either Te(i) is
finite or [Te(i)] is nonempty.”

We claim that the sentences 〈φi | i ∈ ω〉 generate a free distributive
lattice. Given two finite subsets X,Y of ω, we show (∗): if infi∈X φi ≤
supj∈Y φj then X ∩ Y 6= ∅. By Theorem II.2.3 of [3], this suffices to show
that the lattice generated by 〈φi〉 is free. To this end, let X,Y ⊆ ω be finite,
let Φ be the conjunction of {φi | i ∈ X}, and let Ψ be the disjunction of
{φj | j ∈ Y }. Proposition (∗) says that if Φ ` Ψ then X ∩ Y is nonempty.

Suppose X ∩ Y is empty. Let 〈fi | i ∈ X〉 be such that fi ∈ Qi for each
i ∈ X. Let M = {Z ⊆ ω | Z ≤T

⊕
i∈X fi}. Then M is an ω-model of

RCA0 + Φ, and by property (2) of Theorem 3.1, M 6|= φj for any j ∈ Y .
Thus if X ∩ Y is empty then Φ 0 Ψ.

We draw two corollaries from properties of the free distributive lattice
on ω generators which, by the previous theorem, are shared by the lat-
tice A(WKL0,RCA0). These corollaries also follow from the characterization
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of A(WKL0,RCA0) as a countable atomless Boolean algebra; Theorem 3.2
shows that the embeddings can be constructed in a particular manner.

Corollary 3.3. Every finite distributive lattice can be embedded into the
lattice A(WKL0,RCA0).

Corollary 3.4. There is a sequence in A(WKL0,RCA0) with the order type
of the integers.

Remark 3.5. The subsystems constructed in the previous theorem and
corollaries are mathematical in the sense that they are stated in terms of
the existence of paths through certain trees; there is no metamathematical
content to the subsystems. The indices for these trees are defined to imple-
ment parts of a priority argument construction, but this construction makes
no reference to consistency statements.

In Theorem 10.7 of [7], Simpson constructs a Σ1
1 formula φ that is prov-

able from WKL0 but not RCA0. The construction of this formula relies on a
sentence expressing the consistency of Σ0

1 induction. The sentence φ is not
equivalent to the consistency of Σ0

1 induction over RCA0, however, because
of conservativity.
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