Despite being relatively small, my department has three faculty in finite combinatorics, in addition to having me in logic. I recently gave a series of two talks in our seminar to present a broad overview of classical computability theory, and to present some more recent applications to mathematics, via Reverse Mathematics and via Weihrauch Reducibility.

### Boole’s Rings

- On checking a proof July 24, 2017 Dave Sixsmith
- Second-order transfinite recursion is equivalent to Kelley-Morse set theory over GBC July 23, 2017 Joel David Hamkins
- Nebula-The cryptocurrency that will produce the reversible computer July 22, 2017 Joseph Van Name
- The transitive multiverse July 22, 2017 Asaf Karagila
- The fundamental problem of math on the web July 21, 2017 Peter Krautzberger

### Comments on Boole’s Rings

- Comment on Infinite Combinatorial Topology by Rodrigo Hernández-Gutiérrez July 25, 2017 Comments for Assaf Rinot
- Comment on Open determinacy for class games by Second-order transfinite recursion is equivalent to Kelley-Morse set theory over GBC | Joel David Hamkins July 23, 2017 Comments for Joel David Hamkins
- Comment on Transfinite recursion as a fundamental principle in set theory by Second-order transfinite recursion is equivalent to Kelley-Morse set theory over GBC | Joel David Hamkins July 23, 2017 Comments for Joel David Hamkins
- Comment on Games with the computable-play paradox by Warren D Smith July 21, 2017 Comments for Joel David Hamkins
- Comment on Ordinal definable subsets of singular cardinals by saf July 18, 2017 Comments for Assaf Rinot