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REVERSE MATHEMATICS AND Π12 COMPREHENSION

CARL MUMMERT∗ AND STEPHEN G. SIMPSON†

Abstract. We initiate the reverse mathematics of general topology. We show that a certain

metrization theorem is equivalent to Π12 comprehension. An MF space is defined to be a

topological space of the form MF(P) with the topology generated by {Np | p ∈ P}. Here

P is a poset, MF(P) is the set of maximal filters on P, and Np = {F ∈ MF(P) | p ∈ F }.

If the poset P is countable, the space MF(P) is said to be countably based. The class of

countably based MF spaces can be defined and discussed within the subsystem ACA0 of

second order arithmetic. One can prove within ACA0 that every complete separable metric

space is homeomorphic to a countably based MF space which is regular. We show that the

converse statement, “every countably basedMF space which is regular is homeomorphic to a

complete separable metric space,” is equivalent to Π12-CA0. The equivalence is proved in the

weaker system Π11-CA0. This is the first example of a theorem of core mathematics which is

provable in second order arithmetic and implies Π12 comprehension.

In the foundations of mathematics, there is an ongoing research program
known as reverse mathematics. One focuses on specific core mathematical
theorems ô, and one determines the weakest set existence axioms which are
needed in order to prove ô. Such determinations are made in the context of
subsystems of second order arithmetic, Z2. The strength of ô is measured by
showing that ô is logically equivalent to a particular subsystem of Z2, over
a weaker subsystem. The standard reference for reverse mathematics and
subsystems of Z2 is Simpson [12]. See also [11].
Previous reverse mathematics studies [12], [11] have included an extensive
development of the reversemathematics of complete separablemetric spaces.
We now initiate the reverse mathematics of general topological spaces.

Definition 1. The subsystems of Z2 used in this paper are ACA0, Π
1
1-CA0,

and Π12-CA0. We briefly describe these systems. The language of Z2 includes
number variables k,m, n, . . . ranging over N, the set of natural numbers, and
set variablesX,Y,Z, . . . ranging over subsets ofN. All of our systems include
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first order arithmetic plus the induction axiom

∀X [(0 ∈ X ∧ ∀n (n ∈ X ⇒ n + 1 ∈ X ))⇒ ∀n (n ∈ X )].

The system ACA0 includes comprehension axioms

∃X ∀n [n ∈ X ⇔ ϕ(n)]

where the formula ϕ(n) does not mention X and is arithmetical, i.e., it con-
tains no set quantifiers. The system Π11-CA0 includes comprehension for
formulas ϕ(n) which are Π11, i.e., of the form ∀Y è(n, Y ) where è(n, Y ) is
arithmetical. The systemΠ12-CA0 includes comprehension for formulasϕ(n)
which are Π12, i.e., of the form ∀Y ∃Z è(n, Y,Z) where è(n, Y,Z) is arith-
metical. In each of these systems, ϕ(n) is allowed to mention parameters,
i.e., free set variables. Details concerning these systems are in [12, Sections
I.1–I.6].

Remark 1. In the following definitions, we shall show how to formalize
some key concepts of general topology within ACA0. As is usual in reverse
mathematics (see for example the discussion of complete separable metric
spaces in [12, Sections II.5–II.6]), we shall employ “coding” via definitional
extensions of the language ofZ2. In each case, the “code” is a natural number
or a set of natural numbers, but the encoded object may be uncountable. It
will be always be clear how to convert our informal “coding” definitions into
precise, rigorous, definitional extensions of ACA0.

Definition 2. A poset is a partially ordered set. Within ACA0, let P be a
countable poset. A filter1 on P is a set F ⊆ P such that (1) for all p ∈ F
and q ≥ p we have q ∈ F , and (2) for all p, q ∈ F there exists r ∈ F such
that p ≥ r and q ≥ r. A maximal filter is a filter which is not included in
any larger filter. Within ACA0, consider the topological spaceMF(P) whose
points are the maximal filters on P, and whose basic open sets are

Np = {F ∈MF(P) | p ∈ F }

for all p ∈ P. Such a space is called a countably based MF space. See also
Mummert [8], [9].

Remark 2. InDefinition 2withinACA0, the countable posetP is regarded
as a code for the topological space MF(P), and each p ∈ P is regarded as a
code for the basic open neighborhood Np in MF(P). In general, the open
sets of MF(P) are of the form

UL =
⋃

p∈L

Np = {F ∈MF(P) | ∃p ∈ L [F ∈ Np]}

where L is a subset of P. Thus, if F is a point of MF(P), i.e., a maximal
filter on P, then we have F ∈ Np if and only if p ∈ F , and F ∈ UL if and

1Our notion of a filter on a poset is identical to the one that is often used in forcing in
axiomatic set theory. See for example Kunen [7].
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only if F ∩L 6= ∅. Thus the countable set L ⊆ P may be regarded as a code
for the open set UL ⊆MF(P).

Definition 3. Within ACA0, if (A, d ) is a countable pseudometric space,

let (Â, d̂ ) be the complete separable metric space whose points are the
equivalence classes of Cauchy sequences in (A, d ), two such sequences 〈an |
n ∈ N〉 and 〈bn | n ∈ N〉 being equivalent if and only if limn d (an , bn) = 0.
Clearly all complete separable metric spaces arise in this way. See also
[12, Sections I.4, II.5–II.7, III.2, IV.1–IV.2]. Given (A, d ) as above, consider
also the countable poset

P(A,d ) = A× Q+

whereQ+ is the set of positive rational numbers, partially ordered by putting
(a, r) < (b, s) if and only if d (a, b) + r < s . One can show in ACA0 (see
[8, Sections 2.3.1 and 3.2] and [9]) that there is a canonically arithmetically

definable, one-to-one correspondence between the points of (Â, d̂ ) and the
maximal filters on P(A,d ). Moreover, a point x ∈ Â belongs to a basic open
ball

B(a, r) =
{
x ∈ Â

∣∣ d̂ (a, x) < r
}

if and only if the corresponding maximal filter belongs to N(a,r). Thus, in
the topological context, we are justified in identifying the complete separable

metric space (Â, d̂ ) with the countably based MF space MF(P), where
P = P(A,d ).

Definition 4. Within ACA0, if P and Q are countable posets, we define a
code for a continuous function from MF(P) to MF(Q) to be a set Φ ⊆ P ×Q
such that, for all maximal filters F on P,

Φ(F ) = {q ∈ Q | ∃p ∈ F [(p, q) ∈ Φ]}

is a maximal filter onQ. It can be shown that each such code induces a con-
tinuous functionΦ: MF(P)→MF(Q). Moreover, all continuous functions
fromMF(P) to MF(Q) are induced by such codes. A homeomorphism from
MF(P) to MF(Q) is a coded continuous Φ: MF(P) → MF(Q) together
with a coded continuous inverse Φ−1 : MF(Q)→MF(P). The requirement
of a coded continuous inverse is apparently not superfluous; we do not know
whether it is provable in Π12-CA0 that every coded continuous open bijection
Φ: MF(P) → MF(Q) has a coded continuous inverse. See also [8, Section
3.2.3] and [9].

Remark 3. We offer the following reasons for focusing on the class of
countably based MF spaces. See also Mummert [8], [9].

1. In earlier reverse mathematics studies (see [12], [11]), the restriction to
subsystems ofZ2 has been appropriate, natural, and fruitful. Therefore,
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in order to extend reverse mathematics to general topology, it is impor-
tant to identify a class of topological spaces which is reasonably broad
yet conveniently formalizable in Z2. It turns out that the countably
based MF spaces are just such a class.

2. As alreadynoted inDefinition 3, the class of countablybasedMFspaces
includes all complete separable metric spaces. Thus, it includes many
of the topological spaces which arise in core mathematical disciplines
such as analysis and geometry.

3. In addition, the class of countably based MF spaces includes many
topological spaces which are not metrizable. An interesting example is
the Gandy/Harrington space (see [3, p. 240]), which is well known to
be of great importance in contemporary descriptive set theory [1], [4].
See also [8, Section 2.3.4] and [9].

4. The class of countably basedMF spaces enjoys some nice closure prop-
erties. First, the product of countably many countably based MF
spaces is homeomorphic to a countably based MF space. Second, any
nonempty Gä set

2 in a countably based MF space is homeomorphic to
a countably based MF space. See also [8, Section 2.3.2] and [9].

Definition 5. A topological space is said to be regular if, for every open
set U and point x ∈ U , there exists an open set V such that x ∈ V and the
closure of V is included inU . See for example Kelley [5, page 113]. It is well
known and easy to see that metric spaces are regular.

Definition 6. We study the reverse mathematics of the following metriza-
tion theorem for countably based MF spaces.

MFMT:A countably basedMF space is homeomorphic to a com-
plete separable metric space if and only if it is regular.

Lemma 1. MFMT is provable in Π12-CA0.

Proof. One direction of MFMT is easy. It is straightforward to prove in
ACA0 that every countably based MF space which is homeomorphic to a
complete separable metric space is regular.
In the other direction, we prove within Π12-CA0 that every countably based
MF space which is regular is homeomorphic to a complete separable metric
space. Our argument is loosely based on the original proofs of the metriza-
tion theorems due to Urysohn (see also Schröder [10]) and Choquet (see
also Kechris [3, Section 8.E]). The details of our argument are in Mummert
[8, Section 4.3] and [9]. Here we provide only a sketch.

2In the context of arbitrary topological spaces, a Gä set is defined to be the intersection of
countably many open sets. In metric spaces, it is easy to see that every closed set is a Gä set,
but unfortunately this result does not generalize to arbitrary topological spaces, or even to
arbitrary countably based MF spaces. As an example in the Gandy/Harrington space, we
may take any lightface Π11 set which is not boldface Σ

1
1. See also [8, proof of Theorem 2.3.40]

and [9].
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Reasoning within Π12-CA0, let P be a countable poset such that MF(P)
is regular. We use Π12 comprehension to form the set of ordered pairs
(p, q) ∈ P × P such that Np includes the closure of Nq . Using this set as
a parameter, we adapt a construction of Schröder in effective topology [10]
to obtain a metric d1 on MF(P) which is compatible with the topology of
MF(P). Thus MF(P) is metrizable, but we have not yet shown that MF(P)
is completely metrizable.
Fix a countable dense setA ⊆MF(P). We use Π12 comprehension to form
the sets

{(a, r, p) ∈ A× Q+ × P | B1(a, r) ⊆ Np}

and

{(a, r, p) ∈ A× Q+ × P | Np ⊆ B1(a, r)}

where B1(a, r) = {x ∈ MF(P) | d1(a, x) < r}. Using these sets as param-
eters, we attempt to imitate the proof of Choquet’s theorem (see [3, Section
8.E]) that any metric space having the strongChoquet property is completely
metrizable. It is provable in ZFC (see [8, Theorem 2.3.29] and [9]) that every
MF space has the strong Choquet property, but unfortunately this game-
theoretic property is not definable in Z2. We overcome this obstacle by giving
a direct proof within Π12-CA0 that every countably based MF space which
is metrizable is completely metrizable. The details are in [8, Section 4.3]
and [9].
In this way we obtain a complete metric d2 onMF(P) which is compatible
with d1 and hence compatible with the topology of MF(P). It is then
straightforward using Π12 comprehension to construct a homeomorphism

between MF(P) and (Â, d̂2) = MF(Q) where Q = P(A,d2). This proves our
lemma. ⊣

Theorem 1. The following are equivalent over Π11-CA0.

1. Π12 comprehension.
2. MFMT.

Proof. Lemma 1 shows that Π12 comprehension implies MFMT. It re-
mains to prove the reversal. We work in Π11-CA0 and assume MFMT.
Consider a Σ12 formula ∃X ø(n,X ) where ø(n,X ) is Π

1
1. In order to prove

Π12 comprehension, it suffices to prove the existence of the set S = {n ∈ N |
∃X ø(n,X )}. By Kondo’s Π11 uniformization theorem (provable in Π

1
1-CA0,

see [12, Section VI.2]), we may safely assume that for each n there exists at
most one X , call it Xn , such that ø(n,X ) holds.
We write ø(n,X ) in normal form as ¬∃f ∀mR(n,X [m], f[m]). Here we
are using the finite sequence notation X [m] = 〈X (0), . . . , X (m − 1)〉 and
f[m] = 〈f(0), . . . , f(m − 1)〉. We may safely assume that ∀n R(n, 〈〉, 〈〉)
holds. For finite sequences ó and ô, we write ó ⊃ ô if and only if ô is a proper
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initial segment of ó. Let P be the countable poset consisting of all ordered
triples (n,X [k], f[k]) such that (∀m ≤ k)R(n,X [m], f[m]) holds, plus all
ordered pairs (n,X [k]), partially ordered as follows:

1. (n,X [k], f[k]) < (n′, X ′[k′], f′[k′]) if and only if n = n′ and X [k] ⊃
X ′[k′] and f[k] ⊃ f′[k′].

2. (n,X [k]) < (n′, X ′[k′]) if and only if n = n′ and X [k] ⊃ X ′[k′].
3. (n,X [k], f[k]) < (n′, X ′[k′]) if and only if n = n′ and X [k] ⊃ X ′[k′].
4. (n,X [k]) < (n′, X ′[k′], f′[k′]) never.

The maximal filters F on P are of three types:

1. F = {p ∈ P | q ≤ p} where q is a minimal element of P.
2. F = {(n,X [k], f[k]), (n,X [k]) | k ∈ N} where n,X, f are such that

∀mR(n,X [m], f[m]) holds.
3. F = Fn = {(n,Xn[k]) | k ∈ N} where n is such that ∃X ø(n,X ).

Note that there is a closed set C ⊆ MF(P) consisting of Fn for all n such
that ∃X ø(n,X ) holds. The complement of C is the open set

⋃
n∈N
N(n,〈〉,〈〉).

We claim that MF(P) is regular. Clearly it will suffice to show that, for
all maximal filters F and basic open sets Np such that F ∈ Np, we can find
a basic open set Nq such that F ∈ Nq and the closure of Nq is included in
Np. We shall find such an Nq with the additional property that Nq is closed.
Thus we shall see that the topology of MF(P) is generated by basic open
sets which are also closed.
Case 1: F = {p ∈ P | q ≤ p} where q is a minimal element of P. In this
case F is an isolated point of MF(P), and Nq = {F } is closed. For use in
cases 2 and 3, letW be the open set consisting of these isolated points, i.e.,

W =
⋃

q∈M

Nq

whereM is the set of minimal elements of P.
Case 2: F = {(n,X [k], f[k]), (n,X [k]) | k ∈ N} where n,X, f are such
that ∀mR(n,X [m], f[m]) holds. It follows that ø(n,X ) fails. Hence X 6=
Xn if Xn exists. Suppose F ∈ Np, i.e., p ∈ F . If p = (n,X [k]), then Np is
closed, because the complement of Np is the open set

(W \Np) ∪
⋃

p′∈L′

Np′

where L′ is the set of p′ = (n′, X ′[k]) ∈ P such that n′ 6= n or X ′[k] 6= X [k].
If p = (n,X [k], f[k]), letm ≥ k be so large that X [m] 6= Xn[m] ifXn exists,
and put q = (n,X [m], f[m]). Then F ∈ Nq ⊆ Np. Moreover, Nq is closed,
because the complement of Nq is the open set

(W \Nq) ∪
⋃

p′∈L′′

Np′ ∪
⋃

q′∈M ′′

Nq′
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where L′′ is the set of p′ = (n′, X ′[m]) such that n′ 6= n or X ′[m] 6= X [m],
and M ′′ is the set of q′ = (n′, X ′[m], f′[m]) ∈ P such that n′ 6= n or
X ′[m] 6= X [m] or f′[m] 6= f[m].
Case 3: F = Fn. In this case, for all Np such that F ∈ Np, we have
p = (n,Xn[k]) for some k. As in case 2, Np is closed.
We have now proved that MF(P) is regular. It follows by MFMT that
there exists a homeomorphismΦofMF(P) onto a complete separablemetric

space (Â, d̂ ). In particular, sinceC is a closed set inMF(P), Φ(C ) is a closed

set in (Â, d̂ ). For each n ∈ N, if Fn exists then Fn is the unique point of

C ∩ N(n,〈〉), hence Φ(Fn) ∈ Â is the unique point of Φ(C ) ∩ Φ(N(n,〈〉)). If

Fn does not exist, then C ∩N(n,〈〉) = ∅, hence Φ(C ) ∩Φ(N(n,〈〉)) = ∅. Note

also that the sequence of open sets Φ(N(n,〈〉)) ⊆ Â, n ∈ N, is arithmetically

definable uniformly in n, using the code of Φ−1 as a parameter. Thus we can
use Π11 comprehension to form the set

S = {n | Φ(C ) ∩Φ(N(n,〈〉)) 6= ∅} = {n | Fn exists} = {n | ∃X ø(n,X )}.

This completes the proof. ⊣

Remark 4. Theorem 1 shows that a certain metrization theorem is log-
ically equivalent to Π12-CA0 over Π

1
1-CA0. We believe that this is the first

convincing instance of a core mathematical theorem which is equivalent to
Π12 comprehension, in the sense of reverse mathematics. Previous reverse
mathematics results within Z2 (see [12], [11]) have involved only set existence
axioms which are strictly weaker than Π12 comprehension.

3
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[10]Matthias Schröder, Effective metrization of regular spaces, [6], 1998, pp. 63–80.
[11] S. G. Simpson (editor), Reverse Mathematics 2001, Lecture Notes in Logic, Associ-

ation for Symbolic Logic, 2005, Approximately 400 pages. To appear.
[12] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Math-

ematical Logic, Springer-Verlag, 1999, XIV + 445 pages.

DEPARTMENT OFMATHEMATICS

PENNSYLVANIA STATE UNIVERSITY

E-mail: mummert@math.psu.edu
URL: http://www.math.psu.edu/mummert/

DEPARTMENT OFMATHEMATICS

PENNSYLVANIA STATE UNIVERSITY

E-mail: simpson@math.psu.edu
URL: http://www.math.psu.edu/simpson/


